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1 THE EFFICIENT ALLOCATION

Consider the allocation selected by a planner who treats agents identically. We call it the efficient

allocation. The planner maximizes the expected lifetime utility of a representative agent subject

to the physical and technological constraints. This means the optimal plan solves the following

dynamic problem. Let the history of labor shocks of an arbitrary household be defined by

st = (h1, h2, . . . , ht),

where st ∈ St, with St the finite set of all possible histories for a household at date t. Define

p(st|st−1) as the conditional probability of reaching the agent-specific state st, given the agent’s

previous state st−1; let p(st) denote the unconditional probability. Notice that they are both

independent of time as they are induced by the Markov process assumed in the model.

The planner chooses non-negative values {ct(st), ℓt(st)}∞
t=1 to solve

Maximize:
∞∑

t=1
βt−1 ∑

st∈St
p(st)[u(ct(st)) − g(ℓt(st))]

Subject to: ∑
st∈St

p(st)ct(st) ≤ Y (Lt) for each t = 1, 2, . . .∑
st∈St

p(st)ℓt(st)ht(st) = Lt for each t = 1, 2, . . .

The problem above is solved before t = 1 shocks are realized and presumes that (i) the initial

draw is from the long-run distribution and (ii) the population of households is identically given

by the distribution of states, i.e., ∑
st∈St p(st) = 1 because a law of large numbers applies. In

words, the planner maximizes average ex-ante utility of households, placing equal weight on each

household “type,” where a type is determined by the history of shocks st of the household. Here,

slightly abusing notation, we are denoting the productivity shock to a household of “type” st by

ht(st); it should be clear that ht is independent of the agent’s history of shocks (since we assume

a first-order Markov process) and that st appears as an argument simply as an index denoting

the “type” of agent. The planner takes as given the resource constraint reflecting aggregate and

technological feasibility.
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Necessary and sufficient condition for an interior optimum are

βt−1g′(ℓt(st)) = λtY
′(Lt)ht(st)

βt−1u′(ct(st)) = λt

for each agent in state st ∈ St and t = 1, 2, . . ., with the two constraints holding with equality.

That is, on each date t the planner equates marginal consumption utility to the “shadow price”

of aggregate output on date t, i.e., λt. In particular, in the efficient allocation λt/λt+j = β−j.

Hence, the efficient allocation involves perfect insurance for each household.

LEMMA 1. The efficient allocation is stationary, unique, and is defined by constant individual

consumption c(st) = c∗ for each st ∈ St, with c∗ := Y (L), and state-contingent individual labor

supply satisfying

g′(ℓt(st)) = u′(c∗)Y ′(L)ht(st),

with L = ∑
st∈St

p(st)ℓt(st)ht(st) for each t = 1, 2, . . . The efficient allocation can be decentralizes

using state-contingent prices

qt(st) = βt−1p(st) for each st ∈ St and t = 1, 2, . . .

and wt = Y ′(L) for all t = 1, 2, . . ..

Proof. The claim in the Lemma regarding the optimal allocation immediately follows from the

conditions for an interior Pareto optimum. To find the price vector that decentralizes this

allocation suppose the household can trade a full set of contingent claims, before t = 1 shocks

are realized. The household chooses {ct(st), ℓt(st)}∞
t=1 given the prices {qt(st), wt}∞

t=1 to solve the

problem
Maximize:

∞∑
t=1

βt−1 ∑
st∈St

p(st)[u(ct(st)) − g(ℓt(st))]

Subject to:
∞∑

t=1

∑
st∈St

qt(st)ct(st) = y.

Here y := ∑∞
t=1

∑
st∈St qt(st)[wtℓt(st)ht(st) + ξt] is the present discounted value of income; {ξt}∞

t=1

denotes the dividend income stream (the household owns a share of the firm) and {wt}∞
t=1 denotes

the stream of competitive wage rates. Dividends and income do not depend on the individual
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state and there is no aggregate risk. Denoting λ the marginal value of the household’s permanent

income y, the FOC is

βt−1p(st)u′(ct(st)) = qt(st)λ for each st ∈ St and t = 1, 2, . . .

In the efficient allocation c(st) = c∗ for each st ∈ St. Hence, fixing the initial period 1, the Euler

equation for the household becomes

p(s1)
βt−1p(st)

= q1(s1)
qt(st)

for any period t ≥ 2.

Now normalize the state-contingent price on the initial date in state s1 ∈ S1 by fixing q1(s1) :=

p(s1). We obtain the state-contingent relative price vector (qt(st))t,st defined by

qt(st) := βt−1p(st) for any date t = 1, 2, . . . and state st ∈ St.

Given that there is a constant aggregate labor supply, then wt = Y ′(L) for all t.

Lemma 1 makes it clear that the efficient allocation can be decentralized by introducing a

full set of contingent claims to be traded before period 1 shocks are realized. The notation

qt(st) denotes the price of consumption traded in the initial period and delivered on date t if the

household’s state is st. As usual, we have normalized q1(s1) := p(s1).

2 COMPUTATION METHOD

2.1 COMPUTATIONAL ALGORITHM

It could be a challenging task to compute a heterogeneous agent economy with occasionally

binding constraints. In our economy, there are three state variables in the household problem

with two inequality constraints. These sometimes binding constraints make the optimal policy

function non-differentiable and hence complicate the computational task. On top of that, we

need to reply on a large panel of simulation data to clear four markets in our economy. In order

to compute our economy more efficiently and accurately, we follow the algorithm described by

4



(?), who use a flexible simplicial interpolation method (called Delaunay Interpolation) to endoge-

nously pick the grid points at state space for the kink points induced by non-differentiabilities.

Our computational algorithm follows the following steps

1. Given an inflation rate π ≥ 1, guess a risk-free interest rate i = i0 > 1, a wage rate w and

a real money balance M.

2. Given the guess, compute household’s policy functions. Note that the policy functions are

computed by solving a system of non-linear equation consisting of the first order condi-

tions and constraints of household problem. Please refer to the details discussion on the

computational strategy of policy function below. This step generates the policy functions

c(ω), l(ω), m′(ω) and b′(ω), where ω := (m, b, h).

3. Given the policy functions, the economy is simulated over T = 2, 000 periods with popu-

lation N = 20, 000. This step allows to obtain an approximately invariant distribution of

states, with respect to the mean. This gives an associated distribution function ϕsim(ω).

4. Given the approximately invariant distribution of states, the excess supply of bond, labor

and real money holdings are calculated, which correspond to

εb =
∑
h∈H

∫
m∈M

∫
b∈B

b′(ω)ϕsim(ω)dm db,

εL =
∑
h∈H

∫
m∈M

∫
b∈B

l(ω)hϕsim(ω)dm db − L,

εm = M −
∑
h∈H

∫
m∈M

∫
b∈B

πm′(ω)ϕsim(ω)dm db

5. Repeat the steps above and update the guess of (i, w, M) until (εb, εL, εm) are all sufficient

close to 0.

2.2 POLICY FUNCTIONS

The computational strategy is described next. It follows ?. The strategy revolves around solving

a system of equations.
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1. We start by selecting a set of grid points Gexo on state variable m and b, and by guessing

initial policy functions. Then, we solve a system of equations by collocation methods. For

each grid point g ∈ Gexo, we solve a system of equations given next period policy functions.

The policy functions are updated until it converges.

2. Given the policy functions obtained above, compute the endogenous grid points which

corresponding to the exactly bringing points of inequality constraints. The set of these

endogenous grid points is denoted by Gend.

3. Finally, combine the two set of grind points, G = Gexo ∪ Gend and compute the implied

policy functions.

2.3 INEQUALITY CONSTRAINTS

In order to deal with the Kühn-Tucker conditions induced by the inequality constraints, we

first rewrite Kühn-Tucker condition into nonlinear-complementarity-problem (NCF) function by

observing the following relationships

φ(a, b) = (a2 + b2)1/2 − a − b = 0

⇔ a ≥ 0, b ≥ 0, ab = 0

where a and b variables that need to satisfy Kühn-Tucker conditions. φ(a, b) denotes for NCP

function.

Once we formulate the Kühn-Tucker conditions into NCP function, we can solve the inequality

constraints by using a standard non-linear equation solver since NCP function is continuous and
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differentiable. The set of non-linear equations in our household problem is therefore given by

u′(c)π − λ1π = βEu′(c′)

g′(l) = (u′(c) − λ1)wh

φ1(m − c, λ1) = ((m − c)2 + λ2
1)1/2 − (m − c) − λ1 = 0

wl + m + τ + ξ + ib = c + m′π + b′π

u′(c)π − λ1π = βiE(u′(c′) − λ′
1) + λ2

φ2(b′ − b, λ2) = ((b′ − b)2 + λ2
2)1/2 − (b′ − b) − λ2 = 0

where λ1 and λ2 are the shadow price of liquidity constraints and borrowing constraints. There

are 6 functions to be solved, c(ω), l(ω), m′(ω), b′(ω), λ1(ω) and λ2(ω).

3 TRADE BONDS BEFORE TRADING GOODS

Suppose households can trade bonds—hence can borrow—after productivity shocks are realized

and before the good market opens. In this case, constraints no longer bind for anyone, unless

money and bonds are equivalent assets or households can borrow insufficient amounts. In this

case we have just one constraint to consider

c + πb′ + πm′ = m + τ + bi + wℓh + ξ,

where πm′ = wℓh + ξ, i.e., money savings are entirely determined by labor and capital income.

The main differences in the optimality conditions previously derived are (i) λ = 0 so that

Vm = µ = u′(c) and (ii) the optimal choice of labor supply requires

g′(ℓ) = wℓ

π
βE[Vm′ ].

These considerations imply that the analysis is conducted with two Euler conditions

−g′(ℓ) + βE[u′(c′)]wℓ
π

= 0

−πu′(c) + βE[u′(c′)]i ≤ 0 (with = if b′ > b).
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4 THE MODEL WITH CAPITAL

We report some additional data for the model economy with capital.

[Table 1 about here.]

[Table 2 about here.]

[Figure 1 about here.]
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Table 1: The Economy with Capital

Persistent Shocks IID Shocks

π − 1 m c l k m c l k

0% 1.185 1.100 0.986 3.942 1.184 1.175 1.065 3.587

1% 1.137 1.095 0.981 3.925 1.177 1.169 1.061 3.570

2% 1.110 1.090 0.977 3.907 1.170 1.164 1.056 3.555

3% 1.096 1.085 0.972 3.884 1.164 1.160 1.052 3.540

4% 1.090 1.084 0.972 3.871 1.158 1.155 1.047 3.524

5% 1.085 1.076 0.964 3.837 1.153 1.150 1.043 3.510

10% 1.062 1.058 0.949 3.739 1.129 1.128 1.023 3.437

15% 1.040 1.035 0.928 3.627 1.107 1.106 1.004 3.365

20% 1.020 1.018 0.914 3.540 1.086 1.086 0.985 3.298

25% 1.001 0.999 0.897 3.448 1.068 1.068 0.969 3.237

30% 0.984 0.983 0.883 3.368 1.049 1.049 0.952 3.177

35% 0.968 0.967 0.870 3.292 1.032 1.032 0.937 3.121

40% 0.954 0.954 0.859 3.226 1.016 1.015 0.922 3.067

Note: γ = 1.3 and δ = 2; π − 1 is the net inflation rate; x is the mean value, and Ginix is the Gini coefficient associated to the
equilibrium random variable x. We define m = money balances (in real terms), c = consumption, I = income net of taxes/transfers,
wealth is w = m + ω
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Table 2: Distribution of Welfare Costs in the Economy with Capital

Panel A: Persistent Shocks

δ = 1.5 δ = 2 δ = 3

π − 1 ∆π ∆π Q1 Q2 Q3 Q4 ∆π

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1% −0.061 −0.120 −0.372 −0.318 0.196 0.140 −0.134

2% −0.155 −0.226 −0.589 −0.482 0.209 0.183 −0.281

3% −0.264 −0.381 −0.994 −0.609 0.189 0.246 −0.470

4% −0.436 −0.607 −1.405 −0.860 0.164 0.175 −0.695

5% −0.610 −0.742 −1.800 −1.014 0.183 0.293 −0.853

10% −1.353 −1.531 −3.827 −1.451 0.155 0.265 −1.645

15% −1.833 −2.003 −5.175 −1.821 0.322 0.411 −2.247

20% −2.126 −2.424 −6.180 −2.320 0.311 0.672 −2.760

25% −2.282 −2.591 −6.975 −2.679 0.597 1.225 −3.038

30% −2.322 −2.754 −7.619 −2.890 0.571 1.764 −3.270

35% −2.352 −2.782 −8.358 −2.727 0.740 2.348 −3.529

40% −2.160 −2.851 −9.031 −2.718 0.976 2.780 −3.547

Panel B: IID Shocks

δ = 1.5 δ = 2 δ = 3

π − 1 ∆π ∆π Q1 Q2 Q3 Q4 ∆π

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1% 0.061 0.035 −0.017 −0.008 0.041 0.094 0.019

2% 0.136 0.086 −0.056 0.009 0.124 0.223 0.037

3% 0.208 0.135 −0.071 0.029 0.197 0.319 0.080

4% 0.293 0.197 −0.083 0.086 0.281 0.424 0.098

5% 0.373 0.246 −0.094 0.134 0.339 0.506 0.145

10% 0.801 0.581 −0.016 0.462 0.795 0.940 0.342

15% 1.302 0.945 0.158 0.849 1.236 1.371 0.587

20% 1.869 1.373 0.453 1.269 1.818 1.807 0.866

25% 2.455 1.730 0.721 1.630 2.219 2.200 1.156

30% 3.069 2.267 1.193 2.146 2.860 2.805 1.466

35% 3.721 2.759 1.594 2.696 3.424 3.332 1.881

40% 4.396 3.259 2.019 3.236 4.026 3.848 2.225

Note: γ = 1.3 and δ = 2 unless otherwise noted; π − 1 is the net inflation rate. The welfare cost ∆π is reported as the percent
of current consumption the average household would give up to be at zero inflation (two-digit approximation; a negative number
indicates a welfare gain). Qi denotes the i-th quartile of the wealth distribution.
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Figure 1: Real interest rates comparison
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