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B.1 Lowerbound discount factor under concave preferences
It is standard in the experimental literature on indefinitely repeated games to
calculate payoffs based on the assumption of homogeneous players with linear
preferences. Our analysis has followed this standard approach. Here, we clar-
ify what would happen if we explicitly included risk aversion by calculating the
lowerbound discount factor under CRRA preferences. We find that for some em-
pirically reasonable CRRA coefficients full cooperation remains an equilibrium.
The discussion offered below is based on the analysis in Camera et al. (forth.).

For generality, consider the following payoff matrix:

Producer’s choice
Help (C) Do not help (D)

Payoff to producer b y
Payoff to consumer a x

Let players be homogeneous and expected utility maximizers, but relax linear-
ity of preferences assuming utility u(c) = c1−γ/(1 − γ) where c is a payoff form
the matrix above, and γ determines the curvature. As γ → 0, we approach risk
neutrality. Focus on rounds with random termination (those are the ones that
matter, theoretically). Consider the full cooperation equilibrium under the grim
strategy. The equilibrium payoff of a producer at the start of a round is

v∗ := u(b) + δ
u(a) + u(b)

2(1− δ) .

For simplicity, consider the worst possible case, in which if a producer moves off
equilibrium her defection is immediately punished (as if there were public moni-
toring). This pins down the lowest possible lowerbound discount factor because
punishment is immediate, so it gives us a good idea for what happens to the lower-
bound threshold under risk aversion. In this case of immediate full punishment,
the payoff of the producer who moves off equilibrium is

v̂∗ := u(y) + δ
u(x) + u(y)

2(1− δ) .

Cooperation is individually optimal if v∗ ≥ v̂∗, which recalling that a > x and
y > b, can be rearranged as

δ ≥ δ∗∗ := 2× u(y)− u(b)
u(y)− u(b) + u(a)− u(x) .

In the experimental data reported in Section 5 of the paper we used a payoff

1



matrix where x = y = 8 and a = 20 and b = 2. So we have

δ∗∗ := 2× u(8)− u(2)
u(20)− u(2) .

The termination probability is 0.07 so δ = 0.93. Hence, in the linear case γ = 0,
we would have δ∗∗ = 2/3. In the risk-aversion case, we have δ = 0.93 ≥ δ∗∗ for all
γ ≤ 0.5 approximately.

Is this lowerbound empirically reasonable? Estimates of CRRA coefficients
vary widely depending on subject population, type of experiment (field or labora-
tory), gender composition and so on (e.g., see Harrison et al., 2009). However, we
do note that in experiments with a fixed recruitment fee, such as ours, Harrison
et al. (2009) reports an average CRRA coefficient of 0.34, ranging from -0.05 to
0.73 in a 95% confidence interval, while in experiments with low stakes 60% of
subjects lay below 0.41 (Holt and Laury, 2002). Hence, full cooperation cannot
be ruled out as an equilibrium under some moderate levels of risk aversion.

B.2 Matlab code to compute discount factors thresholds
To compute the discount factor thresholds δ1 and δ2 we used MATLAB R2018a.
The algorithm is composed of the following functions: factorial2.m, lmatrix.m,
tmatrix.m, phi_1.m, phi_2.m, phi_3.m, phi_4.m, factors.m.

The description of these functions is as follows: factorial2.m returns the
double factorial of any input number n ≡ N ; lmatrix.m returns the probabil-
ity matrix of mixed matches (cooperator-defector) for any even number n ≡ N ;
tmatrix.m returns the transition matrix in Section 3 for any even number n ≡ N ;
phi_k.m, with k =1,...,4, returns the value of φk(δ), given the value of the discount
factor (x ≡ δ) and the (even) number of players (n ≡ N) as inputs; factors.m
returns the lower-bound (delta_1 ≡ δ1) and the upper-bound (delta_2 ≡ δ2) of
the discount factor that solve expressions (6) and (8), respectively, with the latter
holding with equality, given x ≡ α and n ≡ N as inputs. The MATLAB code of
each function is reported below.

To run factors.m, add all the *.m files to the directory /path/to/MATLAB, then
launch the command factors(x,n), where x ∈ (0, 1) is the parameter α := g

1+l
and n is the even number N representing the size of the group. All other functions
can be launched separately, each returning its own output.

factorial2.m

function factorial2 = factorial2 (n)
% returns double factorial of number n

factorial2 = 1;
for i = n: -2:1
factorial2 = factorial2 *i;

end

2



lmatrix.m

function lmatrix = lambda_matrix (n)
% returns the matrix of probabilities of possible
% mixed matches (cooperator - defector )

L = zeros(n,n);

lmin = 0;
for r = 1:n
lmax = min(n-r,r);
if mod(r ,2) == 0
Jeven_upperbound = lmax /2 + 1;
Jeven = zeros (1, Jeven_upperbound );
else
Jodd_upperbound = (lmax +1)/2;
Jodd = zeros (1, Jodd_upperbound );
end

l = lmin:lmax;
Jeven = l(mod(l ,2)==0);
Jodd = l(mod(l ,2)˜=0);

if mod(r ,2) == 0
Lambda = zeros (1, Jeven_upperbound );
h = r;
for i=1: Jeven_upperbound
j = Jeven (1,i);
lambda = factorial (j)* nchoosek (r,j)* nchoosek (n-r,j)...
* factorial2 (r-j -1)* factorial2 (n-r-j -1);
Lambda(i) = lambda /( factorial2 (n -1));
L(r,h) = Lambda(i);
h = h+2;
end
else
Lambda = zeros (1, Jodd_upperbound );
h = r+1;
for i=1: Jodd_upperbound
j = Jodd (1,i);
lambda = factorial (j)* nchoosek (r,j)* nchoosek (n-r,j)...
* factorial2 (r-j -1)* factorial2 (n-r-j -1);
Lambda(i)= lambda /( factorial2 (n -1));
L(r,h) = Lambda(i);
h = h+2;
end
end
end

lmatrix =L;

end
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tmatrix.m

function tmatrix = tmatrix (n)
% returns the transition matrix given any even number n

temp = zeros(n,n);
temp= lmatrix (n);
Tmatrix = zeros(n,n);

q=0;
for i = 1:n
jmax = min(n-i,i);
for j=i:min (2*i,n)

l=j-i;
for h=l: jmax
q=q+( temp(i,h+i))*( nchoosek (h,j-i ))*(1/2)ˆ h;
end
Tmatrix (i,j) = q;
q=0;
end
end

tmatrix = Tmatrix ;

end

phi_k.m (k=1,2,3,4)
function phi_k=phi_k(x,n)
% replace k with a number in {1 ,2 ,3 ,4}
% returns the value of phi_k, given the value of the
% discount factor x and the number of players n

sigmai=zeros (1,n);
phitemp =zeros (1,n);
A=eye(n)-(x)* tmatrix (n);

for j=1:n
sigmai(j)=(n-j)/(n -1);
end

phitemp =(1-x)* inv(A)* sigmai ’;

phi_k= phitemp (k ,1); % with k ∈{1 ,2 ,3 ,4}

end
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factors.m

function factors = factors (x,n)
% returns delta_1 and delta_2 , given alpha≡x∈ (0, 1) and n even

N=n;
alpha=x;
syms x
sigma_2 =(N -2)/(N -1);
Q_Nm2 = tmatrix (N -2);
IO=zeros (1 ,4);

delta_1 = vpasolve (phi_1(x,N)==1 - alpha , x, [0 ,1]);

sol= vpasolve (( sigma_2 /2)*(x/(1-x))*( Q_Nm2 (1 ,1)...
*( phi_2(x,N)-phi_3(x,N))+ Q_Nm2 (1 ,2)*( phi_3(x,N)...
-phi_4(x,N)))== alpha , x, [0 ,0.9999999]); % =[0 ,1)
if( isempty (sol ))

delta_2 =1;
else

delta_2 =sol;
end

% input -output vector
IO (1 ,1)= N;
IO (1 ,2)= alpha;
IO (1 ,3)= delta_1 ;
IO (1 ,4)= delta_2 ;

fprintf (’N = %d\n’, N);
fprintf (’alpha = %f\n’, alpha );
fprintf (’ delta_1 = %f\n’, delta_1 );
fprintf (’ delta_2 = %f\n’, delta_2 );

% factors =IO;
end
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