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Existence and uniqueness of a stationary distribution {mj} when p∗ = (1, 1, 1).
I. Sufficient conditions for existence. We use a Liapunov function approach as in Zhou (1997)

to provide sufficient conditions such that there is a unique stationary distribution of money.

SpeciÞcally, consider the state space M and an equilibrium point m∗ ∈M. DeÞne a real-valued
function L on M, that satisfy the following requirements: (i) L is continuous and has continuous

Þrst-partial derivatives (ii) L(m) has a unique minimum at m∗ with respect to all other points in

M. (iii) The function úL(m) satisÞes úL(m) ≤ 0 for all m ∈M. This function L is called a Liapunov
function. We then rely on the Liapunov theorem stating that if there exists a Liapunov function

the equilibrium point m∗ is stable and if the function úL(m) < 0 at all m 6= m∗ then the stability is
asymptotic. Equations

1 = m0 +mg +mb +m2g +m2b +mgb

Mg = mg + 2m2g +mgb

Mb = mb + 2m2b +mgb

(1)

τ(mb + 2m2b +mgb) = η [m0 +mg +mb] . (2)

imply that {m0,mg,mb, η} are single-valued functions of {m2g,m2b,mgb}. That is:

mg =Mg −mgb − 2m2g
mb =Mb −mgb − 2m2b
m0 = 1−Mg −Mb +m2g +m2b +mgb

(3)
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and the government budget constraint is

η =
τMb

1− (m2g +m2b +mgb) (4)

Using (3) in

úm2g =mg (mg +mgb)−m2g (m0 +mb) (5)

úm2b=x[m
2
b −m2b (m0 +mg)] + ηmb − τm2b (6)

úmgb=x[mgm2b +mbm2g + 2mbmg −mgb (m0 +mg)] + ηmg − τmgb (7)

we get:

úm2g = (Mg −mgb − 2m2g) (Mg − 2m2g)−m2g (1−Mg +m2g −m2b)
úm2b = x

h
(Mb −mgb − 2m2b)2 −m2b (1−Mb −m2g +m2b)

i
+η (Mb −mgb − 2m2b)− τm2b

úmgb = x[(Mg −mgb − 2m2g)m2b + (Mb −mgb − 2m2b)m2g
+2(Mb −mgb − 2m2b) (Mg −mgb − 2m2g)−mgb (1−Mb −m2g +m2b)]
+η (Mg −mgb − 2m2g)− τmgb

(8)

DeÞne the 3x1 vector m = [m1,m2,m3] where m1 = m2g, m2 = m2b, m3 = mgb and mi ∈ [0, 1]
with m1+m2+m3 ≤ 1. Then deÞne the system in (8) as úm = F (m) where F (m) is a 3×1 vector.
Denote by F (m)[i] the itb row of F (m). Then, letting dF (m)[i]

dmj
= a (i, j) , j, i = 1, 2, 3, the Jacobian

of F (m) is a 3x3 matrix

dF (m)

dm
=


a(1, 1) ... a(1, 3)

: a(2, 2) :

a(3, 1) ... a(3, 3)



2



where, recalling that τ is a constant,

a(1, 1) = m2b + 2mgb + 6m2g − 3Mg − 1 < 0
a(1, 2) = m2g

a(1, 3) = 2m2g −Mg < 0 (since Mg > 2m2g)

a(2, 1) = xm2b +
dη
dm2g

(Mb −mgb − 2m2b) > 0
a(2, 2) = x [4mgb +m2g + 6m2b − 3Mb − 1] + dη

dm2b
(Mb −mgb − 2m2b)− 2η − τ

a(2, 3) = −2x [Mb −mgb − 2m2b] + dη
dmgb

(Mb −mgb − 2m2b)− η
a(3, 1) = x [4mgb + 4m2b − 3Mb] +

dη
dm2g

(Mb −mgb − 2m2g)− 2η
a(3, 2) = x [2mgb + 4m2g − 3Mg] +

dη
dm2b

(Mg −mgb − 2m2g)
a(3, 3) = x [4mgb + 4m2g + 2m2b −Mb − 2Mg − 1] + dη

dmgb
(Mg −mgb − 2m2g)− η − τ

where we note that dη
dmi

> 0 for all mi. We note that Mg > mgb + 2m2g and Mb > mgb + 2m2b if

mg,mb > 0, using (3)-(??). Substituting the inÞmum Mg = mgb + 2m2g and Mb = mgb + 2m2b in

a(2, 2), a(3, 2) and a(3, 3), it is easy to show that all of these terms are strictly negative as η → 0

while a(2, 3)→ 0−. Thus there are small values of η > 0 such that a(2, 2), a(2, 3), a(3, 2) and a(3, 3)

are all negative. Note that η → 0 when either τ → 0 or Mb → 0, and so does dη
dmi

> 0 for all mi.

We want to show that dF (m)dm is negative deÞnite. To do so we can consider the sign of its three

principal minors:

D1 = a(1, 1), D2 =

¯̄̄̄
¯̄a(1, 1) a(1, 2)
a(2, 1) a(2, 2)

¯̄̄̄
¯̄ , and D3 =

¯̄̄̄
¯̄̄̄
¯
a(1, 1) a(1, 2) a(1, 3)

a(2, 1) a(2, 2) a(2, 3)

a(3, 1) a(3, 2) a(3, 3)

¯̄̄̄
¯̄̄̄
¯

We note that D1 = a(1, 1) < 0. This is so because Mg ≥ mgb + 2m2g (with strict inequality if

mg > 0) using (3). Substituting Mg = mgb + 2m2g in a(1, 1) provides a maximum for a(1, 1). This

maximum is seen to be negative since −mgb +m2b − 1 < 0.
The minor D2 = a(1, 1)a(2, 2) − a(1, 2)a(2, 1). Note that a(1, 2) and a(2, 1) are both positive,

and that their product tends to zero as x and η shrink to 0. Furthermore, a(2, 2) < 0 as η tends

to zero because −3Mb − 1 + 4mgb +m2g + 6m2b < 0 (since Mb ≥ mgb + 2m2b). Thus D2 > 0 for x
and η small (i.e. either τ or Mb small). The third minor is

D3 = a(1, 1) [a(2, 2)a(3, 3)− a(2, 3)a(3, 2)]
−a(1, 2) [a(2, 1)a(3, 3)− a(2, 3)a(3, 1)]
+a(1, 3) [a(2, 1)a(3, 2)− a(2, 2)a (3, 1)]
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Note that as η, x→ 0 then the second and third line in D3 vanish, and that the Þrst line, is strictly

negative and given by

τ2 (−3Mg − 1 +m2b + 2mgb + 6m2g)

We conclude that there exist an Mb and x positive but sufficiently small such that D1 < 0, D2 > 0

and D3 < 0. Thus, for Mb and x small the matrix
dF (m)
dm is negative deÞnite (see Chiang).

Since F (m) is a 3x1 vector (�0� transposes it), deÞne the function

L(m) = [F (m)]0 F (m) = ( úm2g)2 + ( úm2b)2 + ( úmgb)2 ≥ 0

We show it is a Liapunov function. It is continuous (by construction) and it has continuous Þrst

partial derivatives. Recalling that the vector F (m) = úm, that d[F (m)]0/dt = úm0 dF (m)dm (a 1x3

vector) and that dF (m)/dt =
h
dF (m)
dm

i0
úm (a 3x1 vector) then the time derivative of L(m) is the

quadratic form (a scalar)

úL(m) = úm0
dF (m)

dm
úm+ úm0

·
dF (m)

dm

¸0
úm

so that úL(m) = 0 if úm = 0, and < 0 if úm 6= 0 for x and Mb small, since
dF (m)
dm is negative deÞnite.

To show that there exists an m∗ such that L(m∗) = 0 we use a proof by contradiction. If

L(m) = úm 6= 0 for all m deÞned above then úL(m) 6= 0. Since m is deÞned on a compact set it

follows that úL(m) has a maximum, say l < 0 (because of negative deÞniteness). But this cannot

be since, deÞning m(t) to be the state of the system at date t,Z t

0

úL(m(s))ds = L(m(t))− L(m(0)) ≤ lt⇒ L(m(t)) ≤ lt+ L(m(0))

which in turn implies L(m(t))→−∞ as t→∞. This can�t be since at every date, by construction,
L(m) ≥ 0. Thus L(m) must be reaching a minimum 0 at some m∗. To show that m∗ is unique, see

below.

Thus L(m) is a Liapunov function, and applying the Liapunov Theorem (see Azariadis, 1993,

for a discrete time version) the unique equilibrium m∗ is asymptotically stable if x and Mb are

positive but sufficiently small. The money distribution m∗ is unique and stationary.

II. Uniqueness. Using (3)-(4) and Mg +Mb < 2, then mi > 0 and η < 1 require

mgb + 2m2g < Mg < 2−Mb < 2−mgb − 2m2b
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mgb + 2m2b < Mb <
1− (m2g +m2b +mgb)

τ
.

We now show that for a feasible pair {m2b,m2g} , if m∗gb solves (7), then it must be unique. Using
(7) and (a1)-(a4) we obtain

mgb =
(Mg−mgb−2m2g)

µ
τMb

1−m2g−m2b−mgb+xm2b

¶
τ+x(1−Mb+m2b−m2g)

+
x(Mb−mgb−2m2b)[m2g+2(Mg−mgb−2m2g)]

τ+x(1−Mb+m2b−m2g)

The right hand side can be shown to be strictly decreasing in mgb for all feasible values of mgb,m2b,

and m2g. It then follows that if there is a feasible m∗gb that solves this expression, then it is unique.

We now show that for a feasible value of mgb, a unique pair
©
m∗2b,m

∗
2g

ª
solves (5) and (6).

Using (5) and (a1)-(a4) we obtain m2b = g(mgb,m2g) where

g(mgb,m2g) = 1−Mg +m2g − (Mg −mgb − 2m2g) (Mg − 2m2g)
m2g

seen to be increasing in m2g for feasible values m2g ≤ (Mg −mgb)/2, and it is concave in m2g.
Using (6) and (a1)-(a4) we obtain m2g = b(mgb,m2b) where

b(mgb,m2b) =
τ

x
+ 1−Mb +m2b − [η + x (Mb −mgb − 2m2b)] (Mb −mgb − 2m2b)

xm2b

which is easily seen to be increasing and concave inm2b for feasible valuesm2b ≤ (Mb−mgb)/2,since
η is increasing in m2b. Note also that g(mgb,m2g) → −∞ as m2g → 0 and b(mgb,m2b) → −∞ as

m2b → 0. Note that m2b ≤ (Mb −mgb)/2 < g(mgb, (Mg − mgb)/2) and m2g ≤ (Mg −mgb)/2 <
b(mgb, (Mb−mgb)/2). The properties of the two functions imply there is a single crossing point for
the two functions in the feasible part of the (m2b,m2g) plane. Thus, for any feasible value of mgb

and η, there is a unique pair
©
m∗2b,m

∗
2g

ª
that solves the systemm2b = g(mgb,m2g)m2g = b(mgb,m2b)

Given the uniqueness of the values in (3)-(4) and mgb,then if a feasible distribution exists, it is

unique.
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