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Existence and uniqueness of a stationary distribution {m;} when p* = (1,1,1).
I. Sufficient conditions for existence. We use a Liapunov function approach as in Zhou (1997)
to provide sufficient conditions such that there is a unique stationary distribution of money.
Specifically, consider the state space M and an equilibrium point m* € M. Define a real-valued

function L on M, that satisfy the following requirements: (i) L is continuous and has continuous
first-partial derivatives (ii) L(m) has a unique minimum at m* with respect to all other points in
M. (iii) The function L(m) satisfies L(m) < 0 for all m € M. This function L is called a Liapunov
function. We then rely on the Liapunov theorem stating that if there exists a Liapunov function
the equilibrium point m* is stable and if the function L(m) < 0 at all m # m* then the stability is
asymptotic. Equations

1 =mo + mg + my + mag + map + mgp

Mg = mg + 2mag + mgp (1)

My = mp + 2mop + Mgy

T(my + 2may + mgp) = 1 [mo + mg +my) . (2)
imply that {mg, mg, mp,n} are single-valued functions of {mag4, map, mgp}. That is:

mp = My — mgp — 2may (3)

mo = 1 — My — My + mag + map + mgp



and the government budget constraint is

_ My
" 1-— (m29 + mop + mgb)

Using (3) in

Mag =mg (Mg + mgb) — mag (Mo + mp)
Thop = x[mj — may (mo + my)] + nmy — Tmap
Mgy = T[MgMap + MpMag + 2mpmg — Mgy (Mo + mg)] + nmg — Tmg,
we get:
tgg = (Mg —mgp — 2mag) (Mg — 2mag) — mag (1 — My + mag — map)
oy = @ [(Mb — Mgy — 2map)? — map (1 — My — mag + map)

+n (My — mgp — 2map) — TMay

mgb = 1’[(Mg — Mgy — 2m29) Moy + (Mb — Mgp — 2m2(,) Mmag

+2 (Mb — Mgp — Qm%) (Mg — Mgp — 2m2g) — Mgp (1 — My — mag + mgb)]

+n (Mg — mgy, — 2mag) — Tmgp

Define the 3x1 vector m = [m1, ma, m3] where mi = magy, ma = map, m3 = mg, and m; € [0,1]

with my +mg +mg < 1. Then define the system in (8) as i = F'(m) where F/(m) is a 3 x 1 vector.

Denote by F(m)]i] the i® row of F(m). Then, letting %mj)[i] =a(i,j), 7,4 =1,2,3, the Jacobian
of F(m) is a 3x3 matrix
a(l,1) ... a(1,3)
dF(m) 59
dm : CL( ) )
a(3,1) ... a(3,3)



where, recalling that 7 is a constant,

a(1,1) = maop + 2mgy + 6mag — 3My — 1 <0

a(1,2) = moyg

a(1,3) = 2mgy — My < 0 (since My > 2myy)

a(2,1) = xmop + 7 dmz (My — mgp — 2map) > 0

a(2,2) = x [4mg, + maog + 6map, — 3Mb — 1]+ =L dmz (Mp —mgy — 2map) — 20 — T
a(2,3) = —2x [My — mgy, — 2map) + 7 dm = (My —mgp — 2map) — 7

a(3,1) = x [dmg, + 4magp — 3Mp] + 77 dm2 (My — mgy — 2mag) — 21

a(3,2) = x [2mgy, + 4maog — 3My] + =L dm% (Mg — mgp — 2may)

a(3,3) = x [dmgy + 4may + 2map — My — 2M, — 1] + d—gjlg—b (My —mgy — 2mag) — 1 — T

where we note that % > 0 for all m;. We note that My > mg, + 2mag and My > mgy, + 2myy, if
mg, mp > 0, using (3)-(?7). Substituting the infimum My = mg, + 2maoy and My = mg, + 2mgy in
a(2,2),a(3,2) and a(3,3), it is easy to show that all of these terms are strictly negative as n — 0
while a(2,3) — 0~. Thus there are small values of 7 > 0 such that a(2,2),a(2,3), a(3,2) and a(3, 3)
are all negative. Note that n — 0 when either 7 — 0 or My — 0, and so does i"—_ > 0 for all m;.
We want to show that ( ) i negative definite. To do so we can consider the sign of its three
principal minors:
a(1,1)a(L,2) a(1,1)a(1,2) a(1,3)
Dy =a(l,1), Dy = , and D3 = |a(2,1) a(2,2) a(2,3)
a(2,1)a(2,2)
a(3,1)a(3,2) a(3,3)
We note that D; = a(1,1) < 0. This is so because My > mg, + 2mgg (with strict inequality if
mg > 0) using (3). Substituting My = mg, + 2may in a(1,1) provides a maximum for a(1,1). This
maximum is seen to be negative since —mgp + mgp — 1 < 0.
The minor Dy = a(1,1)a(2,2) — a(1,2)a(2,1). Note that a(1,2) and a(2,1) are both positive,
and that their product tends to zero as x and 7 shrink to 0. Furthermore, a(2,2) < 0 as 1 tends
to zero because —3Mjy, — 1 + 4mg, + mog + 6map < 0 (since My > mgy, + 2may). Thus Dy > 0 for x

and 7 small (i.e. either 7 or M small). The third minor is
D3 = a(lv 1) [CL(Z, 2)&(3, 3) - a(27 3)(1(3’ 2)]
—a(1,2)[a(2,1)a(3,3) — a(2 3

~—
)

—
—_

~—



Note that as n, z — 0 then the second and third line in D3 vanish, and that the first line, is strictly

negative and given by
72 (=3My — 1 4+ map + 2mgy, + 6mag)

We conclude that there exist an M and x positive but sufficiently small such that Dy < 0, Dy >0

dF(m)
dm

and D3 < 0. Thus, for M, and x small the matrix

is negative definite (see Chiang).

Since F(m) is a 3x1 vector (*” transposes it), define the function
L(m) = [F(m)] F(m) = (1i2g)* + (1h2p)* + (1gp)” = 0

We show it is a Liapunov function. It is continuous (by construction) and it has continuous first

partial derivatives. Recalling that the vector F'(m) = 1, that d[F(m)]/dt = m/ % (a 1x3

!/
vector) and that dF(m)/dt = [%mﬂl] m (a 3x1 vector) then the time derivative of L(m) is the

quadratic form (a scalar)

. /Mm + m’ [dljlgzn)ym

L(m) =m I

so that L(m) = 0 if 1 = 0, and < 0 if 72 # 0 for & and M, small, since % is negative definite.

To show that there exists an m™* such that L(m*) = 0 we use a proof by contradiction. If
L(m) = 1 # 0 for all m defined above then L(m) # 0. Since m is defined on a compact set it
follows that L(m) has a maximum, say [ < 0 (because of negative definiteness). But this cannot

be since, defining m(t) to be the state of the system at date t,
t
/ L(m(s))ds = L(m(t)) — L(m(0)) < It = L(m(t)) < It + L(m(0))
0

which in turn implies L(m(t)) — —oo as t — oo. This can’t be since at every date, by construction,
L(m) > 0. Thus L(m) must be reaching a minimum 0 at some m*. To show that m* is unique, see
below.

Thus L(m) is a Liapunov function, and applying the Liapunov Theorem (see Azariadis, 1993,
for a discrete time version) the unique equilibrium m* is asymptotically stable if z and M, are
positive but sufficiently small. The money distribution m* is unique and stationary.

IT. Uniqueness. Using (3)-(4) and My + M, < 2, then m; > 0 and n < 1 require
mgb+2m2g <Mg <2— M, <27mgb—2m2b
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1-— (ng + mop + mgb)
T

Mgp + 2mep < My <

We now show that for a feasible pair {map, mag}, if my, solves (7), then it must be unique. Using

(7) and (al)-(ad) we obtain

g — My
. (Mg Mgb 2m29)<17m297m2b7mgb +£szb> + w(Mb—mgb—Qme)[m29+2(Mg—mgb—2ng>}
mgb - T+.’E(1*Mb+m2b7mgg) T+I(1*Mb+m2b7ng)

The right hand side can be shown to be strictly decreasing in my, for all feasible values of mgy,, map,
and magy. It then follows that if there is a feasible m;b that solves this expression, then it is unique.

We now show that for a feasible value of mg,, a unique pair {mgb,mgg} solves (5) and (6).
Using (5) and (al)-(a4) we obtain moy = g(mg, mog) where

(Mg — mgy — 2mag) (Mg — 2ma,)
Mmag

g(mgy,mag) =1 — Mg+ mog —

seen to be increasing in myg for feasible values mgy < (Mg — mgb) /2, and it is concave in mag.

Using (6) and (al)-(a4) we obtain maog = b(mgp, map) where

[77 +x (Mb — Mg — 2m2b)] (Mb — Mgp — 2m2(,>

-
b(mgb, map) = . +1— My ~+ mop — o—

which is easily seen to be increasing and concave in mgy, for feasible values mop < (M, —mgb) /2,since
n is increasing in mgp. Note also that g(mgp, mag) — —00 as may — 0 and b(mgy, map) — —00 as
may — 0. Note that may < (My — mgs)/2 < glmgs, (My — mgs)/2) and ma, < (M, —mg)/2 <
b(mgp, (M —mgy)/2). The properties of the two functions imply there is a single crossing point for
the two functions in the feasible part of the (may, moy) plane. Thus, for any feasible value of mgyy,

and 7, there is a unique pair {m3,, m3,} that solves the system
map = g(Mmgp, Mag)
Mag = b(mgy, map)

Given the uniqueness of the values in (3)-(4) and mgp,then if a feasible distribution exists, it is

unique.



