Section 4.1 - Vectors in \mathbb{R}^n

A vector in the plane is represented geometrically by a directed line segment whose initial point is the origin, and whose terminal point is the point (x, y).

Properties of Vectors: Let \vec{u}_1, \vec{v}_1, and \vec{w} be vectors in the plane, and let c and d be scalars.
1. $\vec{u} + \vec{v}$ is a vector in the plane.
2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
3. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
4. $\vec{u} + \vec{0} = \vec{u}$
5. $\vec{u} + (-\vec{u}) = \vec{0}$
6. $c\vec{u}$ is a vector in the plane
7. $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
8. $(c + d)\vec{u} = c\vec{u} + d\vec{u}$
9. $c(d\vec{u}) = (cd)\vec{u}$
10. $1\vec{u} = \vec{u}$

Let $\vec{u} = (u_1, u_2, \ldots, u_n)$ and $\vec{v} = (v_1, v_2, \ldots, v_n)$ be vectors in \mathbb{R}^n and let c be a real number.
Then $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n)$
and $c\vec{u} = (cu_1, cu_2, \ldots, cu_n)$

The same 10 properties apply to \mathbb{R}^n.

Example:
$\vec{u} = (0, 5, -2, 1)$ and $\vec{v} = (3, 4, 1, -1)$ and $c = -2$
$c\vec{u} + \vec{v} = (-3, -6, 5, -3)$

To write a vector \vec{x} as a linear combination of the vectors \vec{v}_1, \vec{v}_2, and \vec{v}_n, we need to find scalars c_1, c_2, and c_n such that
$\vec{x} = c_1\vec{v}_1 + c_2\vec{v}_2 + \ldots + c_n\vec{v}_n = \sum_{i=1}^{n} c_i\vec{v}_i$

Example: Let $\vec{x} = (-1, -2, -2)$ and $\vec{u} = (0, 1, 4)$ and $\vec{v} = (-1, 1, 2)$ and $\vec{w} = (3, 1, 2)$.
Find scalars a, b, and c such that $\vec{x} = a\vec{u} + b\vec{v} + c\vec{w}$
$(-1, -2, -2) = (0, a, 4a) + (-b, b, 2b) + (3c, c, 2c)$
So $(-1, -2, -2) = (-b + 3c, a + b + c, 4a + 2b + 2c)$
Section 4.2 - Vector Spaces

Definition of a vector space: Let \(V \) be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every element \(u, v \) and \(w \) and every scalar (real number) \(c \) and \(d \), then \(V \) is called a vector space and the elements are called vectors.

Addition:
1. \(\vec{u} + \vec{v} \) is in \(V \)
2. \(\vec{u} + \vec{v} = \vec{v} + \vec{u} \)
3. \(\vec{u} + \left(\vec{v} + \vec{w} \right) = \left(\vec{u} + \vec{v} \right) + \vec{w} \)
4. \(V \) has a zero vector \(0 \) such that for every \(\vec{u} \) in \(V \), \(\vec{u} + 0 = \vec{u} \)
5. For every \(\vec{u} \) in \(V \), there is a vector in \(V \) denoted by \(-\vec{u} \) such that \(\vec{u} + (-\vec{u}) = 0 \)

Scalar Multiplication
6. \(c\vec{u} \) is in \(V \).
7. \(c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v} \)
8. \((c + d)\vec{u} = c\vec{u} + d\vec{u} \)
9. \(c(d\vec{u}) = (cd)\vec{u} \)
10. \(1(\vec{u}) = \vec{u} \)

Some important vector spaces:
- \(\mathbb{R} \) = the set of all real numbers
- \(\mathbb{R}^2 \) = the set of all ordered pairs
- \(\mathbb{R}^3 \) = the set of all ordered triples
- \(\mathbb{R}^n \) = the set of all ordered n-tuples
- \(C(-\infty, \infty) \) = the set of all continuous functions defined on the real line.
- \(C[a, b] \) = the set of all continuous functions defined on the closed interval \([a, b]\)
- \(P \) = the set of all polynomials
- \(P_n \) = the set of all polynomials of degree \(\leq n \)
- \(M_{m,n} \) = the set of all \(m \times n \) matrices
- \(M_{n,n} \) = the set of all \(n \times n \) square matrices

Sets that are not vector spaces
- The set of integers
The set of \(n \)th degree polynomials

Example 1:
\[
p(x) = x^3 + x^2 \\
q(x) = -x^3 + x \\
p(x) + q(x) = x^2 + x <- \text{Failure of property 1}
\]

Example 2:
Let \(V = \mathbb{R}^2 \), the set of all ordered pairs of real numbers, with the standard operation of addition and the following nonstandard definition of scalar multiplication:
\[
c(x_1, x_2) = (cx_1, 0) \\
10. \ l\vec{u} = \vec{u} \\
1(x_1, y_1) = (1x_1, 0)
\]

Example 3:
The set of all \(n \times n \) singular matrices with the standard operations is not a vector space.
\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

There are cases where two singular matrices, \(s \) and \(t \), when added will produce a nonsingular matrix \(n \).

Section 4.3 - Subspaces of Vector Spaces

Definition: A nonempty subset \(W \) of a vector space \(V \) is called a subspace of \(V \) if \(W \) is itself a vector space under the operations of addition and scalar multiplication defined in \(V \). \((W \in V)\)

Test for a subspace: If \(W \) is a nonempty subset of a vector space \(V \), then \(W \) is a subspace of \(V \) if and only if the following closure conditions hold:
1. If \(\vec{u} \) and \(\vec{v} \) are in \(W \), then \(\vec{u} + \vec{v} \in W \)
2. If \(\vec{u} \in W \) and \(c \) is a scalar, then \(c\vec{u} \in W \)

Example: Let \(W \) be the set of all \(2 \times 2 \) symmetric matrices.
\(W \subset M_{2,2} \), which is a vector space
1. Let \(A, B \in W \). \((A + B)^T = A^T + B^T = A + B \). Therefore, \(A + B \) is symmetric, and \(A + B \in W \).
2. Let \(A \in W \) and \(c \in \mathbb{R} \). \((cA)^T = cA^T = cA \). Therefore, \(cA \in W \)

Theorem: If \(V \) and \(W \) are both subspaces of a vector space \(U \), then the intersection
of V and W, denoted by $V \cap W$, is also a subspace of U.

$V \cap W \subset U$

1. Let $\overrightarrow{u}, \overrightarrow{v} \in V \cap W$. Then $\overrightarrow{u}, \overrightarrow{v} \in V$ and $\overrightarrow{u}, \overrightarrow{v} \in W \Rightarrow \overrightarrow{u} + \overrightarrow{v} = V$ and $\overrightarrow{u} + \overrightarrow{v} = W$. Therefore, $\overrightarrow{u} + \overrightarrow{v} \in V \cap W$.

2. Let $\overrightarrow{u} \in V \cap W$ and $c \in \mathbb{R}$. Then $\overrightarrow{u} \in V$ and $\overrightarrow{u} \in W$. $c\overrightarrow{u} \in V$ and $c\overrightarrow{u} \in W \Rightarrow c\overrightarrow{u} \in V \cap W$.

What about the union of two subspaces?

$V = \{(x, 0) \text{ where } x \in \mathbb{R}\}$

$W = \{(0,y) \text{ where } y \in \mathbb{R}\}$

$(1,0) \in V \cup W$

$(0,1) \in V \cup W$

But $(1,0) + (0,1) = (1,1)$ and $V \cup W$. So it is not a subspace of \mathbb{R}^2.

Section 4.4 - Spanning Sets and Linear Independence

A vector \overrightarrow{v} in a vector space V is called a linear combination of the vectors $\overrightarrow{u_1}, \overrightarrow{u_2}, \ldots, \overrightarrow{u_r}$ if \overrightarrow{v} can be written in the form $\overrightarrow{v} = c_1\overrightarrow{u_1} + c_2\overrightarrow{u_2} + \ldots + c_k\overrightarrow{u_k}$ where c_1, c_2, \ldots, c_k are scalars.

Example: $V = M_{2,2}$

$$\begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

$$\overrightarrow{v} = c_1\overrightarrow{u_1} + c_2\overrightarrow{u_2} + c_3\overrightarrow{u_3}$$

$$\begin{bmatrix} 0 & 8 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -c_2 - 2c_3 \\ 2 & c_1 + c_2 + c_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

So \overrightarrow{v} is a linear combination of $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}$.

Spanning sets:

Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_r}\}$ be a subspace of a vector space V. The set S is called a
spanning set of V if every vector in the vector space V can be written as a linear combination of vectors in S. In such cases, we say that S spans V.

Example: The set $S = \{(1,0,0),(0,1,0),(0,0,1)\}$ spans \mathbb{R}^3 since every vector $\overrightarrow{u} = (u_1,u_2,u_3) = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1)$.

\[
S = \{(1,2,3),(0,1,2),(-1,0,1)\}
\]

\[
(u_1 - u_3, 2u_1 + u_2, 3u_1 + u_2 + u_3)
\]

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{bmatrix}
\]

\[\text{det} = 0\]

Therefore, S is not a spanning set.

A set of vectors $S = \{v_1,v_2,\ldots,v_k\}$ in a vector space V is called linearly independent if the vector equation $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} = \overrightarrow{0}$ has only the trivial solution $c_1 = 0, c_2 = 0, \ldots, c_k = 0$. If not, then S is linearly dependent.

Example: Determine whether the set $S = \{(1,2,3),(0,1,2),(-2,0,1)\}$ is dependent or not.

\[
1\overrightarrow{v_1} + 2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} = \overrightarrow{0}
\]

\[
\begin{bmatrix}
1 & 0 & -2 & 0 \\
2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}
\]

row echelon form: \[\begin{bmatrix}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{bmatrix}\]

Theorem: A set $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_k}\}, k \geq 2$ is linearly dependent if and only if at least one of the vectors v_j can be written as a linear combination of the other vectors.

\[
c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} = \overrightarrow{0}
\]

Without loss of generality (WLG), suppose $c_1 \neq 0$.

\[
c_1\overrightarrow{v_1} = -c_2\overrightarrow{v_2} - \ldots - c_k\overrightarrow{v_k}, \text{ so } \overrightarrow{v_1} = -\frac{c_1}{c_1}\overrightarrow{v_2} - \ldots - \frac{c_1}{c_1}\overrightarrow{v_k}.
\]

Conversely, if $\overrightarrow{v_1} = c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k}$, $\overrightarrow{v_1} = c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k}$

Therefore, if a $c_n \neq 0$, then the equation is dependent.

Two vectors are linearly dependent if one is a scalar multiple of the other.

$S = \{(1,1,1),(2,2,2)\}$ is a linearly dependant set.

Section 4.5 - Basis and Dimensions
A set of vectors $S = \{v_1, v_2, \ldots, v_n\}$ in a vector space V is called a basis for V if the following conditions are true:

1. S spans V
2. S is linearly independent

- A standard basis for \mathbb{R}^2 is $\{e_1, e_2, \ldots, e_n\}$ where $e_i = (0, 0, \ldots, 1, \ldots, 0)$
- A monostandard basis for \mathbb{R}^2 is $S = \{(1, 2), (2, 1)\}$

The standard basis is $\vec{i}, \vec{j}, \vec{k}$

For P_n (polynomials degree $\leq n$), a standard basis is $\{1, x, x^2, \ldots, x^{n-1}, x^n\}$

For $M_{2,2}$,

$$
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
$$

*Theorem: If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for a space V. Then every vector in V can be written in one and only one way as linear combinations of vectors in S.

Proof: Let $\vec{u} \in V$. Then, there exist $c_1, c_2, \ldots, c_n : u = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$.

(Spanning set)

Suppose $u = b_1 v_1 + b_2 v_2 + \ldots + b_n v_n$. Then

$c_1 - b_1) v_1 + (c_2 - b_2) v_2 + \ldots + (c_n - b_n) v_n = 0$.

But S is a basis, therefore it is linearly independent. So

$c_1 - b_1 = c_2 - b_2 = \ldots = c_n - b_n = 0$. Therefore, $c_i = b_i$ for every $i \in \{1, \ldots, n\}$.

Consequently, the representation is unique.

*Theorem: If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for vector space V, then every set containing more than n vectors in V is linearly dependent.

Corollary: If a vector space V has one basis with n vectors, then every basis for the vector space has the same number of elements.

If a vector space V has a basis consisting of n vectors, then the number n is called the dimension of V, denoted by $\dim(V) = n$.

Examples: $\dim(\mathbb{R}^n) = n$; $\dim(M_{n,m}) = m \times n$

$V = \text{subspace of symmetric matrices in } M_{2,2}$

$\dim(V) = 3$

basis: $\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{pmatrix}$
Theorem: Let \(V \) be a vector space of dimension \(n \).
1. If \(S = \{v_1, \ldots, v_n\} \) is a linearly independent set of vectors in \(V \), then \(S \) is a basis for \(V \).
2. If \(S = \{v_1, v_2, \ldots, v_n\} \) spans \(V \), then \(S \) is a basis for \(V \).

Section 4.6 - Rank of a Matrix and Systems of Linear Equations

Let \(A \) be a \(m \times n \) matrix.
1. The row space of \(A \) is the subspace of \(\mathbb{R}^n \) spanned by the row vectors of \(A \).
2. The column space of \(A \) is the subspace of \(\mathbb{R}^m \) spanned by the column vectors of \(A \).

If \(A \) is an \(m \times n \) matrix, then the row space and column space of \(A \) have the same dimensions.

The dimension of the row space or the column space is called the rank of matrix \(A \). Rank is denoted by \(\text{rank}(A) \).

Example: Find the rank of the matrix \(A \) given by
\[
A = \begin{bmatrix}
1 & -2 & 0 & 1 \\
2 & 1 & 5 & -3 \\
0 & 1 & 3 & 5
\end{bmatrix}
\]
row echelon form:
\[
\begin{bmatrix}
1 & 0 & 0 & -7 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 3
\end{bmatrix}
\]
The dimension is 3, so the rank is 3.

If \(A \) is am \(m \times n \) matrix, then the set of all solutions of the homogenous system of linear equations \(Ax = 0 \) is a subspace of \(\mathbb{R}^n \), called the null space of \(A \), denoted by \(\text{N}(A) \). \(\text{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\} \). The dimension of the null space of \(A \) is called the nullity of \(A \).

Example 1: \[
\begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
is a null space.
\(\text{N}(A) = \{(0,0)\} \)
nullity(A) = 0
Example 2: $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$N(A) = \{(−2t, t), t \in \mathbb{R}\} \quad \text{nullity}(A) = 1$

If A is a $m \times n$ matrix of rank r, then $n = rank(A) + nullity(A)$.

For square matrices:
If A is an $n \times n$ matrix, then the following conditions are equivalent:
1. A is invertable
2. $\det(A) \neq 0$
3. $Ax = b$ has a unique solution for any $n \times 1$ matrix b which is $x = A^{-1}b$
4. Rank$(A) = n$
5. nullity$(A) = 0$
6. The n row vectors of A are linearly independent.
7. The n column vectors of A are linearly independent.