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Bus Contention

Bus contention is a critical aspect in modeling modern multiprocessor
system on a chip (MPSoC)
SystemC TLM-2.0 aids system designers with performance estimation

Loosely-timed (LT)
adequate timing, fast simulation, no notion of contention

Approximately-timed (AT)
accurate timing, slow simulation, complex coding, model contention

Can we model contention fast but accurately for early system design?
Should support different arbitration policies, temporal decoupling and
multi-level interconnects

We introduce Loosely-Timed Contention-Aware (LT-CA) modeling to model
contention fast, accurate, and early in the design flow
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Loosely-Timed Contention-Aware (LT-CA)

LT-CA key features:
TLM-2.0 loosely-timed contention modeling with high accuracy at
high-speed simulation
Early and efficient contention simulation and analysis supporting:

First-come-first-served (FCFS) and round-robin (RR) arbitration
policies
Temporal decoupling
Multiple-level hierarchical interconnects, including multi-level caches or
multiple levels of buses
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LT-CA BusyUntil Contention

We propose BusyUntil,
which uses a state variable in
the interconnect to keep
track of contention
By storing the contention in
the timing annotation of the
blocking transport interface,
the transaction completes in
a single function call
Simple and effective
approach
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LT-CA BusyUntil Contention

BusyUntil on synthetic
SystemC model: Bus3Init
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LT-CA BusyUntil Contention - Round Robin

Not as simple as FCFS,
LT-CA support
round-robin (RR)
scheduling
To avoid complex data
structure such as
Payload Event Queue
(PEQ), we tradeoff
some accuracy for
speed by approximating
the bus contention

Details of algorithm
can be found in the
[TECS’23] journal
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LT-CA BusyMap Contention

BusyUntil is simple and effective approach but requires improvements for
temporal decoupling and multi-level interconnects
We introduce a new data structure, BusyMap, to replace the state variable
in BusyUntil
BusyMap allows temporally decoupled initiator modules that use
out-of-order transactions with different delay offsets from the simulator
global_time

Ordered map of key-value (k , v) of sc_time

key k specifies the start time when the resource becomes busy
value v specifies the duration of how long the resource is used

[0, 3)

0 5 10

[5, 7) [8, 12)Busy Periods:

Map Elements: 0 3

Type: std::map<sc_time,sc_time>

5 2 8 4

Timeline:
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LT-CA BusyMap Contention

Bus contention
model contains
the ordered
busy_map with
its essential
member variables
and methods
Details of
algorithms can be
found in the
[DATE’24] paper
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TLM-2.0 LT-CA Deep Neural Network (DNN)

DNNs are data-intensive software applications that demand early attention
to performance metrics in the design flow
SystemC enables rapid systematic evaluation of design candidates for
lower-level implementation, e.g., RTL
We implement SystemC TLM DNN modeling framework

Generic and self-contained layers, reusability and modularity

input

Conv

7x7+2(S)

MaxPool

3x3+2(S)

LocalRespNorm

Conv

1x1+1(V)

Conv

3x3+1(S)

LocalRespNorm

MaxPool

3x3+2(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

MaxPool

3x3+2(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

AveragePool

5x5+3(V)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

AveragePool

5x5+3(V)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

MaxPool

3x3+2(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

AveragePool

7x7+1(V)

FC

Conv

1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv

1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2 DNN
Specificaion

TLM
Models

Generator

Model 
Parameters

TLM-1 TLM-2.0

Loosely Timed
(LT)

Approximately
Timed (AT)

LT Contention-
Aware

(LT-CA) 

Design  
Candidates 

Automatic  
Models  

Generation 

 Implementation  
Candidate

Untimed 
(UT)

(c) Arasteh SystemC Evolution Day ’24 10 / 24



TLM-2.0 LT-CA DNN

TLM DNN framework,
netspec, is configurable,
customizable and
extensible

TLM-1 and TLM-2.0
UT, LT, LT-CA and
AT
Buffer architecture
Interconnect
addressing
Memory and compute
latency
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netspec internal
data structure
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for TLM generation

Parse DNN model
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Construct
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SystemC module 
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Visualization of TLM-2.0 LT-CA DNN

We introduce, netmemvisual, visualization tool to plot LT and
LT-CA timing diagrams for rapid contention analysis
Interactive and cross-platform supporting command-line and graphical
user interfaces
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Experimental Measurements and Results

Measure total simulated time of GoogLeNet for different
computational capacities and memory latencies Using FCFS scheduling
(in seconds)

 bus interconnection

core0 core15

memory

core1 core2 core14

Loosely-timed Loosely-timed contention-aware Approximately-timed
comp / mem 1ns 10ns 100ns 1000ns 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns
1000 GFLOPS 0.088 0.877 8.763 87.62 1.161 11.61 116.1 1161 1.161 11.61 116.1 1161
100 GFLOPS 0.403 0.888 8.773 87.63 1.164 11.61 116.1 1161 1.164 11.61 116.1 1161
10 GFLOPS 3.603 4.034 8.888 87.73 3.618 11.64 116.1 1161 3.623 11.64 116.1 1161
1 GFLOPS 35.60 36.03 40.34 88.88 35.61 36.18 116.4 1161 35.62 36.23 116.4 1161

Generic LT does not take contention into account
LT-CA considers the effect of contention and shows high accuracy in
simulated time
AT accurately models contention, hence showing a significant increase
in simulated time
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Experimental Measurements and Results - Accuracy

Accuracy of LT and LT-CA BusyUntil (FCFS) Compared to Reference
AT

Loosely-timed Loosely-timed contention-aware
comp / memory 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns
1000 GFLOPS 7.6% 7.6% 7.5% 7.5% 100.0% 100.0% 100.0% 100.0%
100 GFLOPS 34.6% 7.6% 7.6% 7.5% 100.0% 100.0% 100.0% 100.0%
10 GFLOPS 99.4% 34.7% 7.7% 7.6% 99.9% 100.0% 100.0% 100.0%
1 GFLOPS 99.9% 99.4% 34.7% 7.7% 100.0% 99.9% 100.0% 100.0%

LT models shows very low accuracy
LT-CA models show almost complete accuracy
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Experimental Measurements and Results - Accuracy

Accuracy of LT and LT-CA BusyUntil (RR) Compared to Reference AT

Loosely-timed Loosely-timed contention-aware
comp / mem 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns
1000 GFLOPS 7.6% 7.6% 7.5% 7.5% 93.1% 94.2% 93.8% 93.7%
100 GFLOPS 34.6% 7.6% 7.6% 7.5% 94.2% 93.1% 94.2% 93.8%
10 GFLOPS 99.4% 34.7% 7.7% 7.6% 99.8% 94.2% 93.1% 94.2%
1 GFLOPS 99.9% 99.4% 34.6% 7.7% 100.0% 99.8% 94.2% 93.1%

Same pattern applies for LT and LT-CA models in RR scheduling
LT-CA for RR shows a minor decrease in accuracy, it is still a very
accurate model compared to LT
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Experimental Measurements and Results - Speed

Measure total simulator run-time of GoogLeNet for different
computational capacities and memory latencies using FCFS scheduling
on a 32-core host (in seconds)

Loosely-timed Loosely-timed contention-aware Approximately-timed
comp / mem 1ns 10ns 100ns 1000ns 1ns 10ns 100ns 1000ns 1n 10ns 100ns 1000ns
1000 GFLOPS 124.4 121.6 120.4 119.8 141.3 140.0 139.0 137.9 6496 6594 6520 6473
100 GFLOPS 106.9 123.6 123.0 124.0 145.8 145.0 144.9 141.4 6476 6504 6569 6434
10 GFLOPS 105.0 108.5 123.4 131.8 126.5 146.2 142.9 142.7 6310 6669 6544 6529
1 GFLOPS 98.9 104.3 108.9 127.6 124.9 124.6 143.8 141.7 6493 6360 6621 6473

LT models simulate faster than their LT-CA and AT counterparts
LT-CA models simulate slightly slower than LT models (1.2x) but
simulate order of magnitude faster than AT
AT models simulate 46x slower than LT and LT-CA
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Experimental Measurements and Results - Visualization

TLM timing diagrams for the first inception module in GoogLeNet with pass
of 1 image
LT does not model contention so layers in parallel tracks access memory
without blocking each other

In LT-CA model, layers are blocked and wait until access becomes available
red areas
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Experimental Measurements and Results - Visualization

Contention significantly impacts performance when the DNN pipeline is fully
loaded with images (image #75)
As a result, most layers experience blocking due to contention
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Experimental Measurements and Results - BusyMap

Parallel JPEG simulation results running on RISC-V SMP VP

bus interconnect
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cache_L1_15

core15

cache_L2_14
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core14

Simulated time Bus Contention Simulator run-time # wait statements (cores) # wait statements (caches)
Global quantum BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap
0ns 2.33s 2.33s 3.94s 4.00s 30m49s 18m50s 63574400 63628015 21359780 0
10ns N/A 2.33s N/A 4.00s N/A 18m48s N/A 63628015 N/A 0
100ns N/A 2.33s N/A 3.90s N/A 13m33s N/A 22157149 N/A 0
1000ns N/A 2.44s N/A 4.71s N/A 11m38s N/A 6478006 N/A 0
10000ns N/A 2.65s N/A 5.95s N/A 10m20s N/A 896267 N/A 0

BusyMap significantly improves simulator run-time (3x)
BusyMap supports temporal decoupling
BusyMap has high accuracy in simulated time and contention
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Research Outlook

Fast and accurate LT-CA modeling enables the efficient exploration
of alternative memory organizations
Early detection of memory contentions suggests that local memories
close to computing cores can eliminate memory contention in such
data-intensive applications

(c) Arasteh SystemC Evolution Day ’24 20 / 24



Conclusion

This work improves high-level modeling and simulation of interconnect
contention by navigating trade-offs between simulation speed and
timing accuracy
Specifically, we proposed BusyUntil and BusyMap for modeling bus
contention in SystemC TLM-2.0 LT-CA models

Supports FCFS and RR arbitration policies
Supports temporal decoupled with out-of-order transactions
Can effectively model multi-level interconnects and caches

Using BusyUntil, we achieve a speedup of up to 46x on a 32-core host
with only 1% accuracy loss in simulated time
For temporal decoupled with multi-level caches models (BusyMap), we
achieve a speedup of up to 3x on a 16-core host with only 10%
accuracy loss in simulated time and bus contention compared to
BusyUntil
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