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CHAPTER I

INTRODUCTION

The theory of relation algebras is a branch of algebraic logic and universal algebra
that investigates the abstract properties of binary relations and their application to logic.
Systems of binary relations have been studied in their own right since the mid-nineteenth
century. Some of the earliest results are due to A. DeMorgan, and much work was done by
R. S. Pierce and E. Schröder during the later half of that century.

The notion of an abstract relation algebra is due to A. Tarski, and some results about
them were first published in the early 1940’s (Tarski [41]). R. Lyndon [50] proved the
existence of nonrepresentable relation algebras, and D. Monk [64] showed that the variety
of representable relation algebras is not finitely based. The concept of a Boolean algebra
with operators is due to B. Jónsson and A. Tarski [51][52].

The aims of this dissertation are twofold. We wish to show that it is useful to consider
the theory of relation algebras as a special case of the theory of Boolean algebras with a
residuated binary operator and a unit element (ur-algebra for short), and secondly we hope
to demonstrate how a computer may be utilized to prove results in this area.

Our approach is an algebraic one, concentrating on the structure of the lattice of sub-
varieties of the variety of all ur-algebras, and on some interesting members of this lattice,
including the varieties of all

• residuated Boolean monoids (denoted by RM)

• Euclidean ur-algebras (EUR)

• commutative ur-algebras (CUR)

• nonassociative relation algebras (NA)

• semiassociative relation algebras (SA)

• relation algebras (RA)

• symmetric relation algebras (SRA)

as well as the varieties generated by all

• ur-algebras in which the unit is an atom (AUR)

• integral ur-algebras (IUR)

• complex algebras of monoids

• complex algebras of groups (GRA)

• proper relation algebras (RRA).
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Listed below are some of the questions we address about these varieties.

Q1 Are they discriminator varieties?

Q2 Do they have a decidable equational theory?

Q3 Are all subvarieties of finite height finitely generated?

Q4 Do all subvarieties of finite height have only finitely many covers? (Can we list these
covers effectively?)

Q5 For those varieties defined in terms of equations, can we find ‘minimal’ subclasses that
generate them?

Q6 For those varieties generated by a class of algebras, can we find ‘minimal’ equational
bases for them? (In particular, are they finitely based?)

In many cases the answers are trivial, in other cases they follow from well-known classi-
cal results of the theory of relation algebras, and in several cases they are still open (which
does not mean that they are difficult, since some of these questions have not been ad-
dressed before). The last two questions are somewhat vague. The word ‘minimal’ can be
interpreted in many ways, or should perhaps even be replaced by a more subjective term
like ‘illuminating’ or ‘natural’.

Of course there are many other varieties that could be considered, and many more
questions that one could ask about them. A ‘metaquestion’ that arises is why anyone
would be interested in these results. Questions like the ones above attempt to assess how
complicated the equational theory of a variety is. If we are interested in the equational
theory of relation algebras, which is rather complicated, we can get some insight into why
this is so, by looking at some simpler varieties containing or contained in RA.

Questions 3 and 4 measure to some degree how well-behaved the lattice of subvarieties
of the given variety is. If the answer to both questions is yes, then we can in principle
draw a picture of the bottom of the lattice up to whatever (finite) height we desire. If the
answer is no to either question, then even the bottom part of the lattice is bound to be
quite complicated.

Some of the varieties listed above are not of intrinsic interest, but they may provide
a contrast to some closely related variety with different properties. So for example in the
case of relation algebras the properties of being integral and of having an atom as the unit
element are equivalent whereas IUR is a proper subalgebra of AUR.

We briefly indicate where some of the other varieties appear. The concepts of residuation
and conjugation are of course central to the theory of relation algebras (see Chin and
Tarski [51], Birkhoff [67]). The variety UR of all ur-algebras is defined in Jónsson and
Tsinakis [a], and it is shown there that RA can be defined relative to UR by a very simple
equation.

The varieties NA, SA and also the weakly associative relation algebras WA were studied
by R. D. Maddux [78][82]. It is shown there that members of SA are related to certain
reducts of 3-dimensional cylindric algebras, and that WA is generated by all relativizations
of proper relation algebras with respect to symmetric reflexive relations.
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The variety SRA of symmetric relation algebras is a very natural subvariety of RA. Its
members have interesting combinatorial properties. R. D. Maddux [81] showed that every
modular lattice can be embedded into the lattice of equivalence elements in a symmetric
relation algebra.

The variety generated by all complex algebras of monoids is relevant to the study of
automata over regular languages. It has not been studied in any detail. GRA is a natural
variety to consider, given that groups are important mathematical objects. It is mentioned
in Lyndon [59], and R. N. McKenzie [66] showed that it is not finitely based relative to the
variety generated by all integral representable relation algebras.

RRA is of course the variety of all representable relation algebras, ultimately responsible
for the existence of this branch of algebraic logic.

We now outline the contents of the subsequent chapters. Chapter 2 begins with a brief
introduction to Boolean algebras with operators (BAOs for short), varieties, residuation
and the notion of a discriminator term. We then take a closer look at some general results
about (residuated) BAOs. We investigate their algebraic structure and give a normal form
for the variety of all BAOs of a given type. The third section describes an algorithm that
can be used to search for proofs or finite counter-examples to conjectures about BAOs. The
algorithm we propose is of a more semantic nature than other automated theorem proving
methods of logic, like Gentzen systems, semantic tableau or natural deduction. Several of
the results in Chapters 3 and 4 have been proved using a computer program based on this
algorithm. Some of the issues concerning the implementation of this algorithm, and a proof
found by computer are included in the appendix.

Chapter 3 discusses the questions Q1–Q6 with regards to the varieties of ur-algebras
listed above and other varieties derived from them. In the first section we give some general
results about ur-algebras and answer Question 1 and some forms of 5 and 6. One of the
more interesting results is that CRM (the variety of all commutative residuated Boolean
monoids) is a discriminator variety, whereas ERM (the variety of all Euclidean residuated
Boolean monoids) is not. In the next section we consider Question 2. As a consequence of
the undecidability of the equational theory of modular lattices, we are able to show by an
easy argument that the equational theory of SRA is also undecidable. On the other hand,
adapting a standard argument of J. C. C. McKinsey, we show that UR, CUR, IUR and
AUR have decidable equational theories. The third section addresses Questions 3 and 4.
The answer to Question 3 is easy: We give an example (from Jipsen and Lukács [a]) of an
infinite simple symmetric relation algebra that is a member of each of the varieties listed
above and generates a subvariety of height 2 in Λ. With regards to Question 4, we show
that there is a height 1 subvariety of RM that has infinitely many covers, but the question
is still open for RA, and we have only a partial answer for some subvarieties of SRA. In
the fourth section we list all parts of Questions 1–6 that are still open as well as some other
problems we consider interesting.

Chapter 4 contains further results about relation algebras. In the first section we con-
sider a particularly simple sequence of symmetric relation algebras and show that they
generate an ascending chain of subvarieties of GRA. From the uniform structure of these
algebras we can then conclude that subalgebra lattices of members of GRA do not satisfy
any nontrivial lattice equations. The next section is concerned with relation algebras that
are generated by equivalence elements. In Jónsson [88] it is shown that a single equivalence
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element generates a finite representable relation algebra. The case of what chains (or more
generally trees) of equivalence elements generate has been treated in a more general setting
by S. Givant [a] in a recent monograph. Here we show that in a simple symmetric relation
algebra any subalgebra generated by two equivalence elements is finite. In the last section
we show that there exist nonrepresentable absolute retracts in SRA. Andréka, Jónsson
and Németi [91] point out that the absolute retracts in RRA are precisely the full relation
algebras over finite base sets, and these algebras are also absolute retracts in the larger
variety RA (even in SA), but it is not known whether there are others. The result about
SRA makes this seem likely.

We wish to emphasize that this is not a complete account of the theory of ur-algebras.
Two important concepts that are not considered here, are the structure of the free al-
gebras (in the variety of all ur-algebras or in some subvarieties; Andréka, Jónsson and
Németi [91] prove some general results about free algebras in discriminator varieties), and
the notion of splitting algebras (introduced by R. N. McKenzie [72] for lattices and used
by W. J. Blok [78][80b] to analyse the lattice of varieties of modal algebras). The reason
for not including these concepts is that they have not been investigated in detail for ur-
algebras, and that at this stage we have little to add to what is known about them. There
certainly is opportunity for future research here.



CHAPTER II

BOOLEAN ALGEBRAS WITH OPERATORS

Preliminaries

In this section we define Boolean algebras with operators, BAOs for short, and show
how they occur naturally as complex algebras of relational structures. The duality between
complete and atomic BAOs with homomorphisms and relational structures with bounded
morphisms is mentioned and canonical extensions are defined. Some of the properties
preserved by canonical extensions are listed. We then recall some basic results about the
algebraic structure of BAOs (congruence ideals, relative subalgebras, etc).

Thereafter we introduce the concepts of residuation and conjugation. We define resid-
uated BAOs and show what effect residuation has on the algebraic structure of BAOs.

To show that BAOs and residuated BAOs are useful abstractions we mention several
examples of algebraic structures that fit into this framework: modal logics/algebras, tense
logics/algebras, relation algebras, r-algebras, multigroups, geometries, relevance logics.

We end with a brief introduction to discriminator algebras and varieties, and show how
the discriminator is realized in BAOs.

Boolean algebras with operators. Let A0 = (A,+, 0, ·, 1,− ) be a Boolean algebra. A
unary operation f on A0 is additive if f(x+ y) = f(x) + f(y) and normal if f(0) = 0. Now
let f be an n-ary operation on A0 and let a be a sequence in An. For i < n we define the
(a, i)-translate of f to be the unary operation

fa,i(x) = f(a0, . . . , ai−1, x, ai+1, . . . , an−1).

An operator on A0 is an n-ary operation that is additive and normal in each argument,
i.e., an operation for which all (a, i)-translates are additive and normal. Note that 0-ary
operations (constants) have no translates, so they are operators by default.

Let ρ be a function from some fixed index set I to the set of natural numbers ω. We
think of the elements of I as operation symbols, and later also as relational symbols.

A = (A0,F) is a Boolean algebra with operators, or BAO, of type ρ if F = (fA : f ∈ I)
is a sequence of operators on A0 and for each f ∈ I the rank of fA is ρ(f). The class of all
BAOs of type ρ is denoted by BAOρ. A0 is the Boolean reduct of A. A BAO is said to be
complete and atomic if the Boolean reduct is complete and atomic and all the operators are
completely additive, meaning they commute with arbitrary joins in each argument. The
class of all complete and atomic BAOs of type ρ is denoted by BAO ca

ρ .

When confusion is unlikely, we will often omit the superscript of an operator fA, thus
blurring the distinction between an operation symbol and its interpretation. Also, in the
interest of readability we let n represent the rank of whatever operation is being considered
at the time. So we may write

‘f(x0, . . . , xn−1)’ and ‘f(x) where x ∈ An’

5
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with n = ρ(f) understood.

The fundamental operations in a BAO A are the Boolean operations (+, 0, ·, 1,− ) and
the operators (fA : f ∈ I). The notion of a homomorphism between two Boolean algebras
of the same type is the standard definition of a map that commutes with all these operations.
Likewise the concepts of subalgebra, direct product, congruence and subdirectly irreducible
algebra are those of universal algebra. A good introduction to these ideas can be found in
McKenzie, McNulty and Taylor [87] or Burris and Sankappanavar [81]. For a class K of
BAOs of type ρ we let H(K), S(K) and P(K) denote the class of all homomorphic images, all
subalgebras and all direct products of members of K respectively. We think of the index set
I together with the Boolean operation symbols as the language (collection of all operation
symbols) of BAOρ. The set of all terms in this language is denoted by Tρ. Let E ⊆ Tρ × Tρ

be a set of equations. An element (r, s) of E is usually written as r = s, and r ≤ s represents
the equation r·s = s. We will use the following notation throughout:

Mod(E) = the class of all algebras that satisfy all equations in E .

Eq(K) = the set of all equations satisfied by all algebras in K.

K is a variety if K = Mod(E) for some set of equations E .

Var(K) = Mod Eq(K) = HSP(K) = the variety generated by K.

Si(K) = the class of all subdirectly irreducible members of K.

ΛK = the collection of all subvarieties of K.

ΛK is closed under intersections, and if K is a variety then it is the largest element, so ΛK is
a lattice. The meet of two varieties is given by their intersection, and the join is the variety
generated by their union.

To be an operator on a Boolean algebra is of course an equational property, hence BAOρ

is a variety. If I is finite then BAOρ is finitely based, meaning it can be defined by finitely
many equations. The variety BAO(1) with one unary operator, is usually referred to as the
variety of modal algebras (the algebraic counterpart of modal logic).

A relational structure of type ρ is an ordered pair U = (U,R) such that U is a set and
R = (RU : R ∈ I) is a sequence of relations on U of rank ρ(R)+1. The class of all relational
structures of type ρ is denoted by RSρ.

Boolean algebras with operators provide a natural framework for the study of relational
structures from an algebraic point of view. In fact there is a duality between BAO ca

ρ and
RSρ. Given U = (U,R) ∈ RSρ we define the complex algebra U+ = (U+,R+) as follows:
U+ is the Boolean algebra of all subsets of U and R+ = (R+ : R ∈ I) is a sequence of
operations on U+, where each R+ is derived from the corresponding relation by

R+(X0, . . . , Xn−1) = {y : (x, y) ∈ R for some x ∈ X0 × · · · ×Xn−1}.

It is easy to check that U+ ∈ BAOca
ρ . Conversely, if A = (A0,F) ∈ BAOca

ρ then the
atom structure A+ is the pair (A0+,F+), where A0+ is the set of all atoms of A0 and
F+ = (f+ : f ∈ I) is a sequence of relations on A0+ defined by

(x0, . . . , xn) ∈ f+ iff f(x0, . . . , xn−1) ≥ xn.
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This is obviously a relational structure of type ρ, and it is straight forward to verify that
A ∼= (A+)+ and U ∼= (U+)+.

Let U,V ∈ RSρ and let h be a map from U to V . We define h+ : V + → U+ to be
the map that sends a subset of V to its inverse image under h. A bounded morphism is a
map h : U → V such that h+ is a BAO homomorphism from V+ to U+. This property is
characterized by the condition: for all R ∈ I

(z, h(y)) ∈ RV iff
there exists x ∈ Un such that (x, y) ∈ RU

and h(xi) = zi (i < n = ρ(R)).

For A,B ∈ BAOca
ρ and a complete homomorphism k : A → B one can also define a bounded

morphism k+ : B+ → A+ and establish a dual equivalence between the category RSρ with
bounded morphisms and BAOca

ρ with complete homomorphisms. This and other dualities
are treated in detail in Goldblatt [89]. Beyond the concept of a bounded morphism we will
not make use of the categorical aspects of this duality.

Jónsson and Tarski [51] showed that a BAO A = (A0,F) can be extended to a complete
and atomic BAO Aσ = (Aσ

0 ,F
σ) called the canonical extension of A. For the Boolean

reduct A0 the extension arises from the Stone duality and can be characterized algebraically
by the following two properties.

(σ1) For all distinct atoms a, a′ in Aσ
0 there exists b ∈ A with a ≤ b and a′ ≤ b−.

(σ2) Every subset of A that joins to 1 in Aσ
0 has a finite subset that also join to 1.

The operations in Fσ = (fσ : f ∈ I) are defined on a sequence a of atoms of Aσ
0 by

fσ(a) =
∏

{f(b) : a ≤ b ∈ Aρ(f)}

and extend to all other elements of Aσ
0 in a completely additive manner, i.e.,

fσ(x) =
∑

{fσ(a) : a ≤ x and ai ∈ Aσ
0 + (i < ρ(f))}.

Jónsson and Tarski also show that this extension preserves some key properties of A. In
particular any implication of the form r = 0 ⇒ s ≤ t, where r, s, t are terms that do
not involve complementation, holds in A if and only if it holds in Aσ. Other preservation
results can be deduced from what has become known as Sahlqvist’s Theorem in modal logic
(see Sahlqvist [75], Sambin and Vaccaro [89], Venema [92]). The results in Jónsson and
Tarski [51] apply to more general classes of operations on Boolean algebras. For a recent
treatment we refer the reader to Jónsson [91] [92].

From the existence of canonical extensions and the previous remarks about the duality
with relational structures it follows immediately that every member of BAOρ can be embed-
ded in the complex algebra of a member of RSρ. This result is known as the representation

theorem for Boolean algebras with operators.
For a subvariety V of BAOρ we let Vs be the class of all relational structures with the

property that their complex algebras are in V. For a subclass K of RSρ we define Ka to be
the variety generated by all complex algebras of members of K. In symbols:

Vs = {U ∈ RSρ : U+ ∈ V}
Ka = Var({U+ : U ∈ K}).
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The maps V 7→ Vs and K 7→ Ka establish a Galois connection between the subvarieties of
BAOρ and the subclasses of RSρ. In general Vsa ⊆ V and K ⊆ Kas. A variety V is said to
be complete if Vsa = V.

If A ∈ V implies Aσ ∈ V then V is canonical. It follows from the representation theorem
for BAOs that every canonical variety is complete.

The algebraic structure of Boolean algebras with operators. Since Boolean algebras
are term-definably equivalent to Boolean rings, Boolean congruence relations are determined
by their 0-congruence classes or ideals. In particular, if J is an ideal of A0 then the
corresponding Boolean congruence relation is given by

x θJ y iff x⊕ y ∈ J,

where x⊕ y = xy− + x−y denotes the operation of symmetric difference.
An ideal of a BAO is a congruence ideal if it is the 0-congruence class of some congruence

relation on the algebra. The following result gives an internal characterization of congruence
ideals.

Lemma 2.1 Let A ∈ BAOρ. For a Boolean ideal J of A0 the following are equivalent:

(i) J is a congruence ideal of A,

(ii) x ∈ J implies f1,i(x) ∈ J for all f ∈ I and i < ρ(f), where 1 is a sequence of 1’s of
length ρ(f).

Proof. If (i) holds then θJ is a congruence on A, so for all x ∈ J , f ∈ I and i < ρ(f)

x θJ 0 implies f1,i(x) θJ f1,i(0)

and since f1,i(0) = 0, it follows that f1,i(x) ∈ J .
Conversely, suppose (ii) holds. We have to show that θJ has the substitution property

for all f ∈ I. Since θJ is transitive, it suffices to show that for all f ∈ I, all i < ρ(f) and
all a ∈ Aρ(f)

x θJ y implies fa,i(x) θJ fa,i(y).

So suppose x⊕ y = xy− + x−y ∈ J . By the additivity of f we have

fa,i(x)fa,i(y)
− = fa,i(xy)fa,i(y)

− + fa,i(xy
−)fa,i(y)

− ≤ 0 + f1,i(xy
−) ∈ J.

Similarly fa,i(x)
−fa,i(y) ∈ J , whence the result follows. 2

For an element a in a BAO A let Aa = {xa : x ∈ A} = {y ∈ A : y ≤ a} be the principal
ideal generated by a, and let A0a be the relativized Boolean algebra (Aa,+, 0, ·, 1,−a ) with
relative complement x−a = x−a. The relativized BAO Aa is defined to be (A0a, (fa : f ∈ I))
where fa(x) = f(x)a for any sequence x ∈ (Aa)ρ(f).

A congruence element in a BAO A is an element a ∈ A for which the principal ideal Aa
is a congruence ideal. By Lemma 2.1, a is a congruence element if and only if

f1,i(a) ≤ a for all f ∈ I and i < ρ(f).
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Note that the map h(x) = xa is a Boolean homomorphism from A0 to A0a, with kernel
Aa−. Therefore h is a BAO homomorphism from A to Aa if and only if a− is a congruence
element. A universal algebraic result about factor congruences can now be stated in this
context as follows:

Theorem 2.2 A BAO A can be decomposed into a direct product of two nontrivial factors
if and only if there exists a ∈ A such that a /∈ {0, 1} and both a and a− are congruence
elements of A. In this case A ∼= Aa×Aa−.

Finally we mention some useful algebraic properties that hold in all BAOs. It is well-
known that congruence lattices of lattices are distributive, and since BAOs have lattice
reducts, the congruence lattice of a BAO is also distributive. This allows us to invoke
several results from universal algebra. Most notably, Jónsson’s Lemma implies Si(Var(K)) ⊆
HSPu(K), hence every finitely generated subvariety of BAOρ has finite height in the lattice
ΛBAOρ . Also, for BAOs of finite type, it follows from Baker’s finite basis theorem that
finitely generated varieties can be defined by finitely many equations. Another standard
result from universal algebra is that, for any variety V, the lattice ΛV is dually isomorphic
to the lattice of fully invariant congruences of the ω-generated free algebra in V. Hence
ΛBAOρ is a dually algebraic, distributive lattice.

As a result of the equivalence between Boolean algebras and Boolean rings, BAOs have
permutable congruences, and from the characterization of congruence ideals above, it follows
that BAOs have the congruence extension property.

Residuated operators. A unary operation on a Boolean algebra A0 is residuated if there
exists a residual operation g such that for all x, y ∈ A

f(x) ≤ y iff x ≤ g(y).

Equivalently f is residuated if there exists a conjugate operation h such that for all x, y ∈ A

y·f(x) = 0 iff x·h(y) = 0.

If they exist, then g and h are unique, and they are related by the formulas h(x) = g(x−)−

and g(x) = h(x−)−. An operation f is selfconjugate if it is equal to its conjugate.
Note that the relation ‘is a conjugate of’ is symmetric. This is one of the reasons why

it is more convenient to consider conjugates instead of residuals. However, the concept of
residuation applies more generally to posets, and is also known as Galois connection or
adjunction in category theory.

The following simple but important observations about residuated operations in Boolean
algebras appeared in Jónsson and Tarski [51].

Lemma 2.3

(i) Every residuated operation is normal and completely additive (i.e. commutes with all
existing joins).

(ii) f and h are conjugate operations on A0 if and only if they are normal and for all
x, y ∈ A

y·f(x) ≤ f(x·h(y)) and x·h(y) ≤ h(y·f(x)).
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Two n-ary operations f and h on A are conjugate in the ith argument if fa,i is conjugate
to ha,i for all a ∈ An.

Let A = (A0,F) ∈ BAOρ. We say that A is a Boolean algebra with residuated operators

(residuated BAO for short) if for each nonconstant f ∈ I and all i < ρ(f) there exist an
ρ(f)-ary term t which is conjugate to f in the ith argument. Note that by the above lemma
this can be expressed by equations in the language of BAOρ. So, for a fixed choice of terms
t = t(f,i) for each f ∈ I and i < ρ(f), there exists a largest subvariety of BAOρ where these
terms are the conjugates of the operators in the respective arguments. If the terms t(f,i) do
not involve complementation then this variety is canonical.

Relation algebras are motivating examples for studying residuated BAOs. A relation

algebra is an algebra

A = (A0, ◦,
` , e) ∈ BAO(2,1,0)

such that

(i) (A, ◦, e) is a monoid,

(ii) x` is selfconjugate,

(iii) x ◦ y` is conjugate to x ◦ y in the first argument and

(iv) x` ◦ y is conjugate to x ◦ y in the second argument.

Of course this is not the original definition of Tarski [41], but it does show that relation
algebras are included under the definition of residuated BAO. (Actually (ii) is an easy con-
sequence of (iii), (iv) and the existence of an identity element for the relative multiplication
◦.) If (i) is weakened to

(i)′ (A, ◦, e) is a groupoid with identity

then we obtain a definition for nonassociative relation algebras, as introduced by R. D. Mad-
dux [82]. The varieties of all relation algebras and all nonassociative relation algebras are
denoted by RA and NA respectively.

The classical examples of relation algebras are the full relation algebras Re(X) =
((X2)+, ◦,` , e) over a base set X. Here ◦ is the set theoretic relation composition, ` gives
the converse of a relation, and e is the identity relation on X. The variety generated by
these algebras is the variety RRA of representable relation algebras.

A (binary) residuated Boolean algebra, or r-algebra, is a Boolean algebra with three resid-
uated binary operations, A = (A0, ◦, ., /), where . and / are the right and left conjugates
of ◦, which means that the conditions

x(y ◦ z) = 0, y(x / z) = 0 and z(y . x) = 0

are equivalent. By Lemma 2.3(ii) this can be expressed by finitely many equations that do
not involve complementation, hence the class of all r-algebras is a finitely based canonical
subvariety of BAO(2,2,2).

A unital r-algebra, or ur-algebra, is of the form (A0, ◦, ., /, e), where e is a unit element
with respect to ◦ (i.e. e ◦ x = x ◦ e = x for all x ∈ A). A residuated Boolean monoid, or
rm-algebra, is a ur-algebra in which the operation ◦ is associative.



11

The right and left residuals \ and / of ◦ are defined by x\y = (x . y−)− and x/y =
(x− / y)−. They satisfy the requirements of residuals in the sense that

x ◦ y ≤ z iff y ≤ x\z iff x ≤ z/y.

When writing r-algebra formulas, we will use the convention that unary operations have the
highest priority, followed by the Boolean meet (·), then the r-operations (◦, ., /, \, /) and
then Boolean join (+). When confusion is unlikely, x·y will be written as xy. The notation
xn is defined inductively by

x0 = e and xn = xn−1 ◦ x for n > 0.

A motivation for studying r-algebras is that they are natural generalizations of rela-
tion algebras: for any relation algebra A = (A0, ◦,

` , e) we obtain an rm-algebra A′ =
(A0, ◦, ., /, e) if we define x . y = x` ◦ y and x / y = x ◦ y`. If we instead use a nonasso-
ciative relation algebra then we obtain a ur-algebra. Conversely it is shown in Jónsson and
Tsinakis [a] that if a ur-algebra satisfies the equations x.y = (x.e)◦y and x/y = x◦(y.e)
then it is (term-definably equivalent to) a nonassociative relation algebra, with x` = x . e.
This allows us to consider NA and RA as subvarieties of the variety of all ur-algebras (de-
noted by UR). We therefore also use the symbols ◦ and e instead of the more traditional ;
and 1’ for the relative multiplication and identity element of relation algebra.

Other areas where r-algebras and ur-algebras occur are in the theory of automata as
complex algebras over monoids, in axiomatic treatments of the betweeness relation in ge-
ometry, in the algebraic study of relevance logics (with classical negation), and in the study
of complex algebras of ternary relational structures in general. Residuated BAOs have also
been studied in a more category theoretical setting in Ghilardi and Meloni [90].

Another widely studied class of residuated BAOs are tense algebras, defined as Boolean
algebras with two unary operators that are conjugates of each other. In the third section of
Chapter III we show that reflexive tense algebras are term definably equivalent to certain
r-algebras. However we do not discuss tense algebras in general.

We now look at how r-algebras can be obtained from ternary relational structures. Let
U = (U,R) ∈ RS(3), and note that the definition of the complex algebra U+ = (U+, R+)
treats the last coordinate of R-tuples in a special way. We can just as well define two other
operations

R+
1 (X,Z) = {y ∈ U : (x, y, z) ∈ R for some x ∈ X, z ∈ Z} and

R+
0 (Z, Y ) = {x ∈ U : (x, y, z) ∈ R for some y ∈ Y, z ∈ Z}.

The residuated complex algebra of U, denoted by U⊕, is defined as (U+, R+, R+
1 , R

+
0 ) and,

when it is clear from the context which relation R we are working with, then we denote
R+, R+

1 , R
+
0 by ◦, ., / respectively. Clearly U⊕ is a residuated BAO and thus an r-algebra.

The concept of a residuated complex algebra can also be defined for relational structures of
arbitrary type, but this is not needed here.

From the representation theorem for BAOs it follows that every r-algebra can be em-
bedded in the residuated complex algebra of a ternary relational structure.

The discriminator. The theory of discriminator algebras and varieties has been investi-
gated extensively, and provides us with a wealth of information and techniques applicable
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to specific examples of such algebras and varieties. Although we will concern ourselves only
with BAOs, the concept of a discriminator applies to algebras in general. Therefore we
define it first in that context and then show how it simplifies for BAOs.

A discriminator algebra is a nontrivial algebra A for which there exists a ternary term
t (in the language of A), called a discriminator term, such that for all x, y, z ∈ A

tA(x, x, z) = z and tA(x, y, z) = x if x 6= y.

The most striking consequence of the existence of such a term is that A must be simple, i.e.,
A admits only two congruences, namely the identity relation and the universal relation. This
is because any congruence θ other than the identity relation identifies at least two distinct
elements of A, say a 6= b, so by the substitution property

a = tA(a, b, c) θ tA(a, a, c) = c

for any element c ∈ A, and now it follows from transitivity that θ must be the universal
relation.

In general it is not true that every simple algebra is a discriminator algebra, though we
will show below that for atomic r-algebras (in fact for Boolean algebras with at least one
atom and finitely many residuated operators) this is indeed the case.

A discriminator variety is a variety generated by a class of (similar) algebras which are
discriminator algebras with respect to the same term t. Discriminator varieties have nice
structural properties. Here we list three of those that we use frequently.

(I) The concepts of an algebra being simple, subdirectly irreducible or directly indecom-
posable are equivalent in discriminator varieties.

(II) For a variety V and a term t in the language of V, the statement ‘t is a discriminator
term in the subdirectly irreducible members of V’ can be characterized by equations.

(III) In a discriminator variety V any universal sentence can be translated into an equation
such that the sentence holds in all simple members of V if and only if the corresponding
equation holds in V.

A good survey of discriminator algebras in general can be found in the monograph of
Werner [78], and more recent results relevant to algebraic logic are contained in Blok and
Pigozzi [89]. Here we only note that for an algebra A that has a Boolean algebra reduct
A0 = (A,+, 0, ·, 1,− ), A is a discriminator algebra if and only if there exists a unary term
c, called a unary discriminator such that

cA(0) = 0 and cA(x) = 1 if x 6= 0.

This follows from the observation that in a Boolean algebra c and t are interdefinable:

c(x) = t(0, x, 1)− and t(x, y, z) = x·c(x⊕ y) + z·c(x⊕ y)−.

We use the symbol c because cA is a monadic closure operator on A0. For example any
simple relation algebra (A0, ◦,

` , e) is a discriminator algebra with unary discriminator
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term c(x) = 1 ◦ x ◦ 1. In the first section of Chapter III we address the question which
generalizations of relation algebras are discriminator algebras.

We now recall an explicit description (for BAOs) of the translation from universal sen-
tences to equations, mentioned in (III) above. Let V be a discriminator variety of BAOs
with unary discriminator c(x) and let σ be a universal sentence in the language of V. Equiv-
alently we can view σ as a universally quantified open formula and we may assume that
it is built up from atomic formulas (i.e. equations of terms) using only conjunction and
negation. Steps (A)-(C) below inductively define a term σ∗ of V such that

V |= σ∗ = 1 if and only if Si(V) |= σ.

(A) If σ is an atomic formula s = t, let σ∗ = (s⊕ t)−,

(B) if σ is a conjunction of two open formulas ϕ and ψ, let σ∗ = ϕ∗·ψ∗ and

(C) if σ is the negation of an open formula ϕ, let σ∗ = c(ϕ∗−).

The following theorem is a reformulation for BAOs of R. N. McKenzie’s characterization
of discriminator varieties (cf. (II) above, McKenzie [75]).

Theorem 2.4 Let V be a subvariety of BAOρ and let c be a unary term of V. The following
are equivalent:

(i) c is a unary discriminator in all subdirectly irreducible members of V

(ii) V satisfies the equations c(0) = 0, x ≤ c(x),

f1,i(c(x)) ≤ c(x) and f1,i(c(x)
−) ≤ c(x)− (1)

for each operator f ∈ I and i < ρ(f).

Proof. (i) ⇒ (ii) By definition cA(0) = 0, cA(x) = 1 if x 6= 0, and fA
1,i(0) = 0 for each

f ∈ I and i < ρ(f), so the equations hold in V.

(ii) ⇒ (i) Let A be a subdirectly irreducible algebra in V. By Lemma 2.1 the equations
(1) imply that cA(x) and cA(x)− are congruence elements for every x ∈ A. Since any
subdirectly irreducible member of V is directly indecomposible, Theorem 2.2 implies that
cA(x) is either 0 or 1. For x 6= 0 the equation x ≤ c(x) implies that cA(x) 6= 0, so cA(x) = 1.
2

Observe that in a residuated BAO the complement of a congruence element is also a
congruence element, since if t is a conjugate term for f ∈ I in the ith argument then
t1,i is normal and hence t1,i(a) ≤ a for any congruence element a, which is equivalent to
t1,i(a)a

− = 0, f1,i(a
−)a = 0 and finally f1,i(a

−) ≤ a−. Therefore half the equations (1) are
redundant in this case. Also, the existence of a nontrivial congruence element in a residuated
BAO implies that the algebra is decomposable. Since every ideal in a finite Boolean algebra
is necessarily principal, it follows that for finite residuated BAOs the properties of being
indecomposable, subdirectly irreducible and simple are equivalent.
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For a BAO A = (A0,F) of finite type (i.e. I finite), we define a term τ by

τ(x) =
∑

{f1,i(x) : f ∈ I, 0 < ρ(f), i < ρ(f)}.

So for example in a ur-algebra A = (A0, ◦, ., /, e)

τA(x) = 1 ◦ x+ x ◦ 1 + 1 . x+ x / 1 + 1 / x+ x . 1.

It now follows from Lemma 2.1 that A and the modal algebra (A0, τ
A) have identical

congruence lattices.

With this notation we can also summarize the equations (1) as

τ(c(x)) ≤ c(x) and τ(c(x)−) ≤ c(x)−.

Note that for r-algebras τ(x) is selfconjugate and so the two equations are equivalent.

Theorem 2.5 Let A ∈ BAOρ be of finite type. If A is simple and contains at least one
atom, and if τ(x) is selfconjugate then A is a discriminator algebra with unary discriminator
c(x) = τm(x) for some m ∈ ω.

Proof. For any atom a ∈ A, the congruence ideal generated by a is the join of all
principal ideals Aτm(a), m ∈ ω. If A is simple, then this join must be A, which is a
compact congruence ideal of A. Therefore there exists ma ∈ ω such that τma(a) = 1.

Now for any nonzero x ∈ A, τma(a)x 6= 0, hence τma(x)a 6= 0 and a ≤ τma(x), since
τ is selfconjugate and a is an atom. Consequently 1 = τma(a) ≤ τ2ma(x) for all nonzero
x ∈ A and therefore c(x) = τ 2ma(x) is a unary discriminator. 2

In light of the remarks after Theorem 2.4 we also have the following result.

Corollary 2.6 Every finite subdirectly irreducible residuated BAO of finite type is a dis-
criminator algebra with unary discriminator c(x) = τm(x) for some m ∈ ω.

General Results

Normal forms and decidability. We now take a closer look at the notion of a normal
form for BAOs and its relationship to decidability. For a precise definition of an algorithm
or a computable function, or the closely related concept of partial recursive function, we
refer the reader to Davis [58] or Rogers [67]. For our purpose it will suffice to think of a
computable function as a function f that can be implemented as a computer program such
that for each input x the program computes the output f(x) in finitely many steps. A set
X is decidable if the characteristic function

χ(x) =

{

1 if x ∈ X
0 otherwise

is computable.
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A variety V has a normal form if there is a computable function that maps every term
t ∈ Tρ to a corresponding normal form term t̃ ∈ Tρ such that for all s, t ∈ Tρ,

s = t ∈ Eq(V) iff s̃ = t̃.

Here the equality symbol is used in two different ways. On the left it denotes a formal
equality, and we could just as well have written (s, t) ∈ Eq(V). On the right it denotes
syntactic equality, i.e., s̃ and t̃ must be the same term. For terms in the language of BAOs
we usually weaken this notion of syntactic equality to equality modulo the Boolean algebra
axioms. This is permissible since Boolean algebras terms have a normal form.

We say V has a decidable equational theory or, more compactly, V is decidable if Eq(V)
is a decidable subset of Tρ × Tρ. Clearly every variety that has a normal form is decidable.
The converse is not true in general, but we show below that it does hold for varieties of
BAOs with finitely many operators.

For the rest of this section we consider the variety BAOρ with operator symbols from a
finite set I. Let X be a fixed finite set of variables and for x ∈ X and s, t, t0, . . . , tn−1 ∈ Tρ

define the degree of a term by

deg(x) = 0, deg(t−) = deg(t), deg(s+ t) = max{deg(s),deg(t)}

deg(f(t0, . . . , tn−1)) = 1 + max{deg(t0), . . . ,deg(tn−1)}.

Tn(X) denotes the set of terms of degree n. The set Rn(X) of reduced terms of degree n is
defined by

R0(X) = FBA(X)+, Rn(X) = FBA(X ∪ I(Rn−1(X)))+

where FBA(X)+ is the set of atoms of the free Boolean algebra over X and, for a set of
terms R,

I(R) = {f(t0, . . . , tn−1) : f ∈ I and t0, . . . , tn−1 ∈ R}.

Finally, let R(X) =
⋃∞

n=0Rn(X). Strictly speaking the elements of R(X) are equivalence
classes of terms modulo the Boolean algebra axioms, but since these axioms are well under-
stood we will not distinguish between a class and any representative member. The following
two results were proved for modal algebras in Fine [75], and the proofs hold for BAOs in
general. Together they give a normal form for BAOρ.

Theorem 2.7 Any term t ∈ Tρ(X) of degree ≤ n is equivalent in BAOρ to a (possibly
empty) disjunction of reduced terms of degree n.

Proof. We will consider an empty disjunction to be equivalent to 0. The proof proceeds by
induction on the degree of t. If deg(t) = 0 then t is a Boolean term, hence by the disjunctive
normal form theorem for Boolean algebras, t is a disjunction of terms in R0(X).

Suppose now deg(t) = n > 0. Then t is a Boolean combination of variables and terms
f(t0, . . . , tm−1) for some ti ∈ Tρ(X) with deg(ti) < n, f ∈ I, (i < m = ρ(f)). By the
induction hypothesis each ti is equivalent to a disjunction of terms in Rn−1(X). Since the
operators are normal and additive, f(t0, . . . , tm−1) is equivalent to a disjunction of terms
f(s0, . . . , sm−1), where each si ∈ Rn−1(X). Hence t is equivalent to a disjunction of terms
from X ∪ I(Rn−1(X)) and therefore equivalent to a disjunction of terms in Rn(X). 2
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The (possibly empty) disjunction of reduced terms equivalent to t will be referred to as
the disjunctive normal form, and is denoted by t̃. Let V = BAOρ. For any t ∈ Tρ(X), t = t̃
is an identity of V, so

s̃ = t̃ implies s = t ∈ Eq(V).

We still have to prove the reverse implication. Since s = t is equivalent to s ⊕ t = 0, and
since 0̃ = 0, it suffices to show that if t = 0 ∈ Eq(V) then t̃ = 0. Equivalently, it is sufficient
to show that for all t ∈ Rn(X), t = 0 is not an equation of V. This is done by defining an
algebra An ∈ V in which the equation t = 0 fails. Let the set of atoms of An be

⋃n
i=0Ri(X)

and define the operators on An+ by

fAn(t0, . . . , tm−1) =
∑

{s ∈ An+ : f(t0, . . . , tm−1) is a conjugant of s},

and extend them additively to An. Let h : Tρ(X) → An be the homomorphism that extends
the assignment

h(x) =
∑

{s ∈ An+ : x is a conjugant of s}.

Theorem 2.8 For any t ∈ An+ we have h(t) ≥ t (in An) and hence the equation t = 0
fails in An.

Proof. We show, by induction on the degree of t, that for any conjugant r of t, h(r) ≥ t,
whence the result follows. If deg(t) = 0 then any conjugant is of the form x or x− for some
x ∈ X. In the first case we have h(x) ≥ t by definition, and in the second case x is not a
conjugant of t, so h(x) 6≥ t and therefore h(x−) ≥ t.

Now suppose deg(t) = n > 0 and let r be a conjugant if t. If r is either x or x− we
proceed as before. If r is of the form f(t0, . . . , tm−1) for some f ∈ I and ti ∈ Rn−1(X)
(i < m = ρ(f)), then the induction hypothesis implies h(ti) ≥ ti, hence

h(r) = fAn(h(t0), . . . , h(tm−1)) ≥ fAn(t0, . . . , tm−1) ≥ t.

Finally, suppose r is of the form f(t0, . . . , tm−1)
− for some f ∈ I and ti ∈ Rn−1(X)

(i < m = ρ(f)). We want to conclude that t ≤ h(r) = fAn(h(t0), . . . , h(tm−1))
−. Suppose

to the contrary that the atom t is below h(r)− = fAn(h(t0), . . . , h(tm−1)). Then there
exist si ∈ An+ with si ≤ h(ti) and t ≤ fAn(s0, . . . , sm−1). Note that f(s0, . . . , sm−1) is
a conjugant of t, while f(t0, . . . , tm−1) is not. Therefore si 6= ti for some i < m, so si, ti
disagree for some conjugant, say q is a conjugant of si and q− is a conjugant of ti. Then
h(si) ≤ h(q) and h(ti) ≤ h(q)−. Since deg(si) < n we also have si ≤ h(si). But then
si 6≤ h(ti), contradicting the choice of the si. 2

So t̃ is indeed a normal form of t in V. Note that while this disjunctive normal form
is useful for proving syntactical results about BAOs, it does not have much computational
value, since the length of t̃ is a doubly exponential function of the degree of t and the size
of X and I. For example the term xf(y) has a disjunctive normal form

xyf(xy)f(x−y)f(xy−)f(x−y−) + 23 similar terms.

Of course we could contract it back to xf(y), but even for Boolean algebras not every normal
form has a unique shortest representative (e.g. Quine [59] shows that xy−+x−y+yz−+y−z
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is equivalent to two minimal length terms x−y+xz−+y−z and xy−+x−z+yz−). In practice
we write terms and equations in whatever form is most convenient at the time. Naturally
we prefer to write x ≤ f(x) rather than xf(x)− = 0 or xf(x)−f(x−) + xf(x)−f(x−)− = 0.

Corollary 2.9 Let BAOρ be of finite type. Then any decidable subvariety of BAOρ has a
normal form.

Proof. Let V be a decidable subvariety of BAOρ. Any term t is equivalent to its disjunctive
normal form t̃. To obtain a normal form t̂ for V, we simply delete the disjuncts s of t̃ for
which the equation s = 0 holds in V. Since V is assumed to be decidable, t̂ is computable
from t̃. 2

The next theorem shows that with the help of some extra variables we can ‘flatten out’
any equation by rewriting it as a collection of implications of equations with degree ≤ 1.
We first give a specific example to illustrate the idea.

Lemma 2.10 In BAO(2) the following formulas are equivalent:

(i) (x ◦ y) ◦ z ≤ x ◦ (y ◦ z)

(ii) u ≤ v ◦ z and v ≤ x ◦ y and y ◦ z ≤ w imply u ≤ x ◦ w

(iii) u(x ◦ w) = 0 and y ◦ z ≤ w and v ≤ x ◦ y imply u(v ◦ z) = 0

Proof. (i)⇒(ii) If u ≤ v ◦ z, v ≤ x ◦ y and y ◦ z ≤ w then

u ≤ (x ◦ y) ◦ z ≤ x ◦ (y ◦ z) ≤ x ◦ w

where the middle inequality follows from (i).
(ii)⇒(i) Define u = (x ◦ y) ◦ z, v = x ◦ y and w = y ◦ z. Then the assumptions of (ii) are

satisfied, hence u ≤ x ◦ w = x ◦ (y ◦ z).
(i)⇔(iii) is similar. 2

Theorem 2.11 Let BAOρ be of finite type. For any reduced term r ∈ R(X) the equation

r = 0 is equivalent in BAOρ to an implication
∧k

i=0 si = 0 ⇒ t = 0 where each si ∈
R1(X ∪ Y ), Y is a finite set of additional variables and t is of the form xf(y0, . . . , yn−1) or
xf(y0, . . . , yn−1)

− for some x, yi ∈ Y and f ∈ I.

Proof. Suppose r has degree ≥ 1. First assume we can write r in the form r ′f(r0, . . . , rn−1).
If x is a variable that does not occur in r then r = 0 is clearly equivalent to

x ≤ r′ ⇒ xf(r0, . . . , rn−1) = 0. (2)

Let y0, . . . , yn−1 be a sequence of variables not in r. Then the formula

x ≤ r′ ∧
n
∧

i=1

yi ≤ ri ⇒ t = 0,
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where t = xf(y0, . . . , yn−1), is equivalent to (2) since f is isotone. Similarly if we write r in
the form r′f(r0, . . . , rn−1)

− then r = 0 is equivalent to

x ≤ r′ ∧

n
∧

i=0

ri ≤ yi ⇒ t = 0,

where t = xf(y0, . . . , yn−1)
−. Now we rewrite the equations to the left of the implica-

tion in normal form, i.e., as a conjunction of equations of the form q = 0, q ∈ Rn(X ∪
{x, y0, . . . , yn−1}). To reduce the degree of the terms q we do a similar substitution as
above: For conjugants f(t) and f ′(t′)− of q we again introduce sequences of new variables
x, z and replace q = q′f(t)f ′(t′)− = 0 by

q′f(x)f ′(z)− = 0 ∧
n
∧

i=0

ti ≤ xi ∧
n′

∧

i=0

zi ≤ t′i.

Performing this step repeatedly on all (nontrivial) conjugants of q and for all terms in the
formula, we obtain the desired result. 2

Varieties that are generated by their finite members. We now give some general
sufficient conditions under which the set of equations that hold in a variety is the same
as the set of equations that hold in all finite members of the variety. This situation is of
interest because of the following well-known result.

Theorem 2.12 If a variety V of algebras is finitely based and generated by its finite members
then V has a decidable equational theory.

A heuristic argument is based on the observation that one can effectively enumerate all
finite members of V (up to isomorphism) and all equations provable from the finite basis of
V. Given an equation ε, one checks these two lists in turn until one discovers a finite algebra
in which ε fails or a proof of ε from the basis. Since V is generated by its finite members,
one of these two alternatives must occur after finitely many steps. In practise this is not a
viable decision procedure, but in the next section we show how the enumeration can done
somewhat more efficiently for Boolean algebras with operators.

Returning to the question when varieties are generated by their finite members, it is
clear that a variety V ⊆ BAOρ has this property if and only if every equation that fails
in some member of Si(V), fails in some finite member of V. Given an equation ε, and an
algebra A ∈ Si(V) in which ε fails, we let a0, a1, . . . , an−1 be elements of A corresponding
to the values of all subterms of ε under some assignment for which ε fails. Suppose we
can find a finite Boolean subalgebra B0 of A0 that contains a0, a1, . . . , an−1, and suppose
further that we can induce operations fB on B0 such that B = (B0, (f

B : f ∈ I)) ∈ V and
for all b ∈ B

fA(b) ∈ B implies fB(b) = fA(b).

Then ε will fail in B when evaluated under the same assignment.
The Boolean algebra B0 can be chosen to be any finite subalgebra between SgA0(a0, . . . , an−1)

and A0, but we have to find uniform ways of inducing the operations fB on B0 such that
the algebra B inherits desirable properties of A.
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This approach was first taken by J. C. C. McKinsey for closure algebras. In modal logic
a closely related technique is referred to as a filtration. For a unary closure operator f ,
McKinsey defined

fB(b) =
∏

{fA(c) : b ≤ c ∈ B and fA ∈ B}

which is again a closure operator. However, if fA is residuated, this is not necessarily
the case for fB. We wish to preserve residuation, so we consider first the following more
abstract setting.

Let A0 and B0 be Boolean algebras, and suppose h : B0 → A0 is a conjugated Boolean
homomorphism. That means there exists a (unique) map hc : A0 → B0 such that ah(b) = 0
if and only if bhc(a) = 0. Then hc(a) is calculated in B0 by

hc(a) =
∏

{b− ∈ B : ah(b) = 0} =
∏

{b ∈ B : a ≤ h(b)}.

Note that if B0 is finite then these meets always exist, hence all maps from finite Boolean
algebras are conjugated. For an n-ary operation fA on A, we define fβ on B by

fβ(b0, . . . , bn−1) = hc(fA(h(b0), . . . , h(bn−1)))

and Bβ = (B0, (f
β : f ∈ I)).

We are interested in the case when B0 is a subalgebra of A0 and h is the inclusion map.
In this situation we usually do not refer to h explicitly, but we still need a name for its
conjugate hc. In lattice theory this map is denoted by βh so, when the need arises, we will
use β for the conjugate of the inclusion map.

Lemma 2.13 Let A ∈ BAOρ and let B0 be a finite Boolean subalgebra of A0. Then for
all f ∈ I and b ∈ Bρ(f)

(i) fA(b) ≤ fβ(b),

(ii) fA(b) ∈ B implies fβ(b) = fA(b),

(iii) Bβ ∈ BAOρ and

(iv) if f and g are two n-ary operations that are conjugate in the ith argument then fβ

and gβ are also conjugate in the ith argument.

Proof. (i) and (ii) follow from the characterization of the conjugate map above, and (iii)
holds because conjugates are additive and normal. To prove (iv) we note that the compo-
sition of conjugated maps is again conjugated, i.e., the following statements are equivalent:

0 = xfβ
b,i(y)

0 = xhc(fA(h(b0), . . . , h(y), . . . , h(bn−1)))
0 = h(x)fA(h(b0), . . . , h(y), . . . , h(bn−1))
0 = h(y)gA(h(b0), . . . , h(x), . . . , h(bn−1))
0 = xhc(gA(h(b0), . . . , h(x), . . . , h(bn−1)))

0 = ygβ
b,i(x)
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2

We say that a subvariety V of BAOρ is β-closed if for every A ∈ Si(V) and every finite
set S ⊆ A there is a finite Boolean subalgebra B0 of A0 such that S ⊆ B and Bβ ∈ V. The
variety V is strongly β-closed if for every A ∈ Si(V) and every finite subset S of A containing
the constants of A, the Boolean algebra B0 = SgA0(S) satisfies Bβ ∈ V. Note that both
the variety of all r-algebras and the variety of all ur-algebras are strongly β-closed. From
the above discussion we now get the following result.

Theorem 2.14 Let V be a subvariety of BAOρ. If V is β-closed then it is generated by its
finite members.

A model-construction/theorem-proving algorithm

In this section we describe an algorithm useful to construct BAOs that satisfy a set of
universal first-order sentences. In some cases the algorithm also functions as a theorem-
prover by showing that the given set of sentences is unsatisfiable.

Methods to algorithmically decide equations or first-order sentences have been stud-
ied extensively in logic. For relation algebraic equations R. D. Maddux [83] and E. Or-
lowska [91] give sequent calculi and semantic tableau methods. The algorithm described
here developed out of joint research with E. Lukács. It does not analyse equations syntac-
tically, but rather in the way they impose restrictions on their models. This allows us to
adapt the algorithm easily to different equational (and also universal) theories of BAOs.

Let L = {+, 0, ·, 1,− } ∪ I be the language of BAOρ. For a finite Boolean algebra
A = (A,+, 0, ·, 1,− ),

LA denotes the expansion of L with all elements of A as constants,

EA denotes the set of sentences which asserts that any model B of EA is a Boolean algebra
with A a subalgebra of B, and

E denotes a set of equations of the form t = 0, where t is a term in the language LA.

We will also assume that in all models of E ∪ EA the operation symbols f ∈ I denote
operations isotone in each argument, i.e., E contains or implies equations such as

f(x1y1, . . . , xnyn)·f(x1, . . . , xn)− = 0

for each f ∈ I. For all applications we have in mind, E ∪ EA contains an equational basis
of the variety BAOρ, so this condition is certainly satisfied. In most of these applications
E also contains universal sentences in the language of LA, but to keep things simple we
initially restrict ourselves to equations.

Now consider the set CA of all atomic formulas of the form

(i) a ≤ f(a0, . . . , an−1)

(e) a·f(a0, . . . , an−1) = 0
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where f ∈ I, a, a0, . . . , an−1 ∈ A and n = ρ(f), referred to as inclusion and exclusion

formulas respectively.
The problem we consider is the following: Given a subset C of CA, find a model of

D = C ∪ E ∪ EA or show that no such model exists, i.e., show that D is inconsistent.
This problem is closely related to the embedding problem for partial algebras (cf.

Evans [80]), since we may view the formulas in C as defining partial operations on the
Boolean algebra A, and we are looking for an extension in BAOρ that is a model of E .

In general this is easily seen to be an undecidable problem since it is possible to reduce
equational decision problems to this form. However there is a simple effective procedure that
uses the information in C and the equations in E to derive further inclusion or exclusion
formulas. If there exists a finite model of D then this procedure will find one of least
cardinality. In particular this algorithm provides an effective decision procedure in varieties
that are generated by there finite members. However, if D has only infinite models, then
the algorithm will not terminate. We begin with some definitions and a few simple lemmas
that are used later on to describe the algorithm.

For a given set C ⊆ CA and for each f ∈ I define two operations f λ
C and fµ

C on the
Boolean algebra A by

fλ
C (b)=

∑

{a : (a ≤ f(b)) ∈ C}

fµ
C (b)=

∏

{a− : (a·f(b) = 0) ∈ C},

where b ∈ Aρ(f). If it is clear which set C is used in the definition, then we will simply write
fλ and fµ for the above two operations. It follows from the definition that in any model B
of D

fλ(a) ≤ fB(a) ≤ fµ(a)

for all a ∈ Aρ(f). Thus fλ and fµ are lower and upper bounds of fB restricted to A
or, looked at in another way, if f λ(a) 6≤ fµ(a) for some sequence a ∈ Aρ(f) then D is
inconsistent. We also define lower and upper bounds on the values of term functions on A
as follows:

(i) aλ = aµ = a and xλ = xµ = x for constants and variables,

(ii) if r, s are terms and t = r + s then tλ = rλ + sλ and tµ = rµ + sµ,

(iii) if s is a term and t = s− then tλ = sµ− and tµ = sλ− and

(iv) if s0, . . . , sn−1 are terms, f ∈ I is n-ary and t = f(s0, . . . , sn−1) then tλ = fλ(sλ
0 , . . . , s

λ
n−1)

and tµ = fµ(sµ
0 , . . . , s

µ
n−1).

Lemma 2.15 Suppose B is a model of C ∪E ∪EA. Then for any m-ary terms t, s0, . . . , sn−1

of LA and for all a ∈ Am ⊆ Bm we have:

(i) tλ(a) ≤ tB(a) ≤ tµ(a),

(ii) (t = 0) ∈ E implies tλ(a) = 0,

(iii) if t·f(s0, . . . , sn−1) = 0 is in E then B |= tλ(a)·f(sλ
0(a), . . . , sλ

n−1(a)) = 0, and

(iv) if t·f(s0, . . . , sn−1)
− = 0 is in E then B |= tλ(a) ≤ f(sµ

0 (a), . . . , sµ
n(a)).
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Proof. By definition (i) holds if t is a constant or a variable or a member of I. So suppose
it holds for terms r and s. If t = r + s then

tλ(a) = rλ(a) + sλ(a) ≤ rB(a) + sB(a) = tB(a) ≤ rµ(a) + sµ(a) = tµ(a)

and if t = s− then

tλ(a) = sµ(a)− ≤ sB(a)− = tB(a) ≤ sλ(a)− = tµ(a).

Finally, if (i) holds for terms s0, . . . , sn−1 and t = f(s0, . . . , sn−1) then

fλ(sλ
0 (a), . . . , sλ

m−1(a)) ≤ fB(sB0 (a), . . . , sBn−1(a)) ≤ fµ(sµ
0 (a), . . . , sµ

n−1(a))

follows from the assumption that f is isotone.
(ii) follows from (i), since if B |= t = 0 then tλ(a) ≤ tB(a) = 0 for all a ∈ Am.
To prove (iii) and (iv) we note that if t·f(s0, . . . , sn−1) = 0 is in E then

tλ(a)·fB(sλ
0(a), . . . , sλ

n−1(a)) = 0

and similarly, if t·f(s0, . . . , sn−1)
− = 0 is in E then

tλ(a) ≤ tB(a) ≤ fB(sB0 (a), . . . , sBn−1(a)) ≤ fB(sµ
0 (a), . . . , sµ

n−1(a)).

Hence the desired atomic formulae hold in B. 2

The significance of conditions (iii) and (iv) in the preceding lemma is that they tell us
how to use the equations of E and the partial information in C about the operations to find
other inclusion and exclusion formulas of CA that are true in every model of E . We will use
the notation C → ϕ for any such formula ϕ ∈ CA that can be obtained in this way.

Now, starting with C0 = C we define

Ci+1 = Ci ∪ {ϕ ∈ CA : Ci → ϕ} and Cω =
⋃

i∈ω

Ci.

Observe that if A, I and E are finite then Cω can be calculated in finitely many steps. It
follows from the above lemma that if B |= C ∪ E ∪ EA then B |= Cω. However, it may turn
out that fλ

Cω
(a) 6≤ fµ

Cω
(a) for some a ∈ Aρ(f). In that case Cω ∪ E ∪ EA is inconsistent, and

consequently C ∪ E ∪ EA is also inconsistent.
The next lemma tells us that if C contains enough information about the operations

(fλ : f ∈ I) then it defines a model of C ∪ E ∪ EA.

Lemma 2.16 Suppose fλ
C = fµ

C for all f ∈ I. If

tλ(a) = 0 for all a ∈ Aρ(t) and all equations t = 0 in E (3)

then Aλ = (A, (fλ
C : f ∈ I)) is a model of C ∪ E ∪ EA.

Proof. Note that Aλ satisfies the atomic formulae in C whenever f λ
C ≤ fµ

C . The stronger

assumption fλ
C = fµ

C implies that tA
λ

= tλ, so (3) is equivalent to Aλ |= E . Finally, since
A is a Boolean algebra, we always have Aλ |= EA. 2
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Dn

Dn,i Dn,e Dn,s

Figure 1: A ternary tree of formula sets

The most likely situation however is the following:

Lemma 2.17 Suppose B |= C ∪ E ∪ EA and for some f ∈ I and a ∈ Aρ(f) we have
fλ(a) < fµ(a). Let a be an atom of A such that a ≤ f µ(a)·fλ(a)− and define

Ci = C ∪ {a ≤ f(a)},

Ce = C ∪ {a·f(a) = 0} and

Cs = C ∪ {a′ ≤ f(a)} ∪ {a′′·f(a) = 0},

where Cs ⊆ CAa and Aa is an extension of A in which the atom a is split into two new
atoms a′, a′′ /∈ A such that a′ + a′′ = a and all other atoms of A remain atoms of Aa. Then
B is a model of exactly one of Ci, Ce or Cs.

Proof. Consider the element a ∈ A ⊆ B. If a ≤ fB(a) then B |= Ci and if a·fB(a) = 0
then B |= Ce. However if neither of these cases apply then a′ = a·fB(a) and a′′ = a·fB(a)−

are two disjoint nonzero elements of B such that a′ + a′′ = a and clearly B |= Cs. 2

The algorithm that searches for a model of D = C ∪ E ∪ EA proceeds by building a
ternary tree of sets (nodes) Dn of formulas (see Figure 1). Here n is a string of symbols
from {i, e, s} representing the path from the root of the tree to the node Dn and thus n is
unique for each node. The immediate descendents of Dn are Dn,i, Dn,e and Dn,s. Each node
Dn has an associated Boolean algebra An, and Dn is the union of three sets Cn, E and EAn .
Starting with D as the root (labeled by the empty string), the following steps are repeated
for each node Dn:

(1) compute C ′ = (Cn)ω;

(2) if fλ
C′(a) 6≤ fµ

C′(a) for some f ∈ I and a ∈ Aρ(f) then Dn is inconsistent;

(3) if fλ
C′ = fµ

C′ for all f ∈ I then Aλ
n is a model of Dn;

(4) if 0 6= b = fµ
C′(a)·fλ

C′(a)− for some f ∈ I and a ∈ A
ρ(f)
n then choose an atom a ∈ An,

such that a ≤ b and define the immediate descendents of Dn by

Cn,i = C′i and An,i = An,

Cn,e = C′e and An,e = An,
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Cn,s = C′s and An,s = Aa
n,

where the operations i,e ,s are as in Lemma 2.17.

Since An is finite, there are only finitely many choices at each stage in step (4), and we
can in principle investigate each choice in turn. The next two results provide the model-
construction and theorem-proving aspect of this algorithm respectively.

Theorem 2.18 If C ∪ E ∪ EA has a finite model then any tree constructed by steps (1)–(4)
will contain a model of minimal cardinality.

Proof. Let T be a tree constructed by steps (1)–(4). We claim that T effectively enumerates
all finite minimal models of D = C ∪ E ∪ EA (i.e. models that have no proper subalgebras
that model D). Suppose B is a finite minimal model of D. Then A is a subalgebra of B0.
To check that B occurs in the tree, we start at the root of T and at each node we choose
the descendent of which B is a model, using Lemma 2.17. Since each choice more closely
approximates the finite algebra B, step (3) will eventually be satisfied. 2

Theorem 2.19 If some tree constructed by steps (1)–(4) has inconsistent nodes at the end
of each branch, then C ∪ E ∪ EA is inconsistent.

Proof. Let T be a tree that has inconsistent nodes at the end of each branch. Of course the
assumption that each branch terminates implies that T is finite. Suppose to the contrary
that C∪E∪EA is consistent. Then it has a (possibly infinite) model B. By Lemma 2.17 there
has to be at least one branch of T such that B is a model of each node along this branch.
This, however, contradicts the assumption that every branch ends in an inconsistent node.
2

An implementation of this algorithm is discussed in the appendix. When working with
relation algebras, we usually want to restrict our attention to the simple members of RA.
Since they are characterized by a universal sentence (x 6= 0 ⇒ 1 ◦ x ◦ 1 = 1) it is useful to
allow such sentences in E . Step (2) of the algorithm must then be modified to check the
consistency of C ∪ E ∪ EA with respect to these sentences. This is done with the help of the
following definition.

Let σ be a universal sentence in the language LA. Equivalently, we can view σ as an open
formula, and we may assume that it is a disjunction of a conjunction of atomic formulas.
For a ∈ An we say that σ(a) is compatible with C ∪ EA if

(i) σ is t = 0, and tλ(a) = 0,

(ii) σ is t 6= 0, and tµ(a) 6= 0,

(iii) σ is ϕ ∧ ψ, and both ϕ(a) and ψ(a) are compatible with C ∪ EA,

(iv) σ is ϕ ∨ ψ, and either ϕ(a) or ψ(a) is compatible with C ∪ EA.

The sentence σ is compatible with C ∪ EA if it is compatible for all a ∈ An, otherwise it is
incompatible. The next result shows how compatibility is related to consistency.
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Lemma 2.20 If σ is a universal sentence and C∪{σ}∪EA is consistent then σ is compatible
with C ∪ EA.

Proof. Suppose B is a model of C ∪ {σ} ∪ EA. If σ is t = 0 then tλ(a) = 0 for all
a ∈ An by Lemma 2.15 (ii), and for t 6= 0 it follows from part (i) of the same lemma that
0 6= tB(a) ≤ tµ(a) for all a ∈ An. If σ is a conjunction of two sentences, both sentences are
consistent and hence compatible with C ∪ EA. Finally, suppose σ is a disjunction of ϕ and
ψ. Since B is a model of σ, either ϕ(a) or ψ(a) holds in B for all a ∈ An, hence either ϕ(a)
or ψ(a) is compatible with C ∪ EA. 2

We can therefore add the following step to the algorithm.

(2.1) If any universal sentence in E is incompatible with C ′ ∪ EAn then Dn is inconsistent.

Further enhancements that make the algorithm more manageable (although they do
not increase the class of problems to which it applies) are discussed in the appendix. The
algorithm as described here has mainly been used to prove results about covers of the atoms
in ΛSRA like Theorem 3.43. Other results that were suggested or partially proved by this
algorithm are Theorem 4.4 and 4.10.

An important aspect of this algorithm that has not yet been settled is the question of
its completeness with respect to the deductive closure of C ∪ E ∪ EA, i.e does the converse
of Theorem 2.19 hold, or equivalently, if none of the trees constructed by steps (1)-(4)
have inconsistent nodes at the end of all branches, does C ∪E ∪EA have a (possibly infinite)
model? If Mod(E) is a variety that is generated by its finite members, then this follows from
Theorem 2.18, but for an arbitrary finite set E of universal sentences, a general completeness
theorem has not been established.



CHAPTER III

VARIETIES OF UR-ALGEBRAS

Varieties containing SRA

In this section we first give an overview of the varieties that we will be considering and
prove some simple results about them. We discuss the relationship between ur-algebras
and relation algebras (investigated in Jónsson and Tsinakis [a]) and a connection between
varieties of r-algebras and varieties of ur-algebras (from Jipsen, Jónsson and Rafter [a]).
We then show that all finite r-algebras, all integral r-algebras, ur-algebras with finitely
many elements below the unit, and all commutative residuated monoids are discriminator
algebras, provided they are subdirectly irreducible. These results are used to give equational
bases for some varieties of ur-algebras. On the other hand we give an example of a Euclidean
rm-algebra that is subdirectly irreducible but not simple, thereby showing that the variety
of all Euclidean rm-algebras is not a discriminator variety. At the end of this section we
prove that the varieties of all r-algebras, all integral r-algebras and all ur-algebras are
generated by the residuated complex algebras of all partial groupoids, all groupoids and all
partial groupoids with identities respectively.

Overview. The varieties we consider appear in Figures 2, 3 and 4. Their definitions are
most readily obtained from Table 1. For example ERM is the variety of all Euclidean
rm-algebras, defined relative to UR by the equations

(x . y) ◦ z ≤ x . (y ◦ z) and (x ◦ y) ◦ z = x ◦ (y ◦ z).

The prefixes A, I and N are defined by universal sentences rather than equations. In
that case AV, IV and NV are the varieties generated by all members of Si(V) that satisfy
the respective sentences.

Note that we treat (nonassociative) relation algebras as ur-algebras with the converse
(`) defined by the term function x` = x . e. This allows us to view NA and RA as
subvarieties of UR. The following result justifies this point of view.

Theorem 3.1 (Jónsson and Tsinakis [a]) Let A = (A0, ◦, ., /, e) be a ur-algebra and define
x` = x . e. Then the following are equivalent:

(i) (A0, ◦,
` , e) is a nonassociative relation algebra,

(ii) A satisfies the identities x` ◦ y = x . y and x ◦ y` = x / y.

Figures 2, 3 and 4 are meet subsemilattices, but not sublattices of ΛUR. The latter
two figures present two different views into the interval between the variety SRA of all
symmetric relation algebras and UR.
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Table 1: Varieties of ur-algebras

Name Description Definition

UR unital residuated Boolean x ◦ e = e = e ◦ x and
groupoids A = (A0, ◦, ., /, e) x(y◦z) = 0 ⇔ y(x/z) = 0 ⇔ z(y.x) = 0

RM residuated Boolean monoids UR and (x ◦ y) ◦ z = x ◦ (y ◦ z)
NA nonassociative relation algebras UR and x . y = x`◦y and x / y = x◦y`

WA weakly associative relation algebras NA and xe ◦ 1 = (xe ◦ 1) ◦ 1
SA semiassociative relation algebras NA and x ◦ 1 = (x ◦ 1) ◦ 1
RA relation algebras NA and (x ◦ y) ◦ z = x ◦ (y ◦ z)

RRA representable relation algebras Var({Re(α) : α ≤ ω})
GRA group relation algebras Var({G+ : G is a group})

BGRA Boolean group relation algebras Var({(Zα
2 )+ : α ≤ ω})

E Euclidean (x . y) ◦ z ≤ x . (y ◦ z)
A e is an atom ex = 0 or ex− = 0
I integral x ◦ y = 0 implies x = 0 or y = 0
C commutative x ◦ y = y ◦ x
S symmetric x . y = x ◦ y
N neat symmetric symmetric and x ≤ x ◦ x or x(x ◦ x) = 0
T totally symmetric symmetric and x ≤ x ◦ x
Sa subadditive symmetric and x ◦ x−y ≤ x+ y

The lower half are prefixes for varieties in the upper half.
For a variety V and a prefix P , PV = Var({A ∈ Si(V) : A has property P}).

For NA, x` abbreviates x . e.

Table 2: Implications between some ur-algebra properties

I ⇒ A
S ⇒ C
S ⇒ NA

E and A ⇒ I (Theorem 3.7)
C and RM ⇒ A (Theorem 3.15)
S and RM ⇒ SRA
A and NA ⇒ WA
I and NA ⇒ SA
E and NA ⇒ RA (Jónsson and Tsinakis [a])
A and SA ⇒ I
C and SA ⇒ I
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∗

∗

∗

∗

∗

RA

IRA

CRA

SRA

NRA

TRA

RRA

IRRA

CRRA

SRRA

NRRA

TRRA

GRA

CGRA

SGRA

NGRA

TGRA

BGRA

NBGRA

TBGRA

Figure 2: Some subvarieties of RA ordered by inclusion

(Prefixes I, C, S,N, T applied to RA,RRA,GRA,BGRA)
(∗ indicates varieties are not known to be distinct)
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SRA

CRA

IRACERM

ISUR ICRM IERM RA

ASUR ICUR CRM IRM SA

SUR ACUR IUR ARM ERM WA

CUR AUR RM EUR NA

UR

Figure 3: Some subvarieties of UR ordered by inclusion

(Prefixes A, I, C, S applied to UR,RM ,ERM ,RA)
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SRA

CRA

IRA

ISUR

RA

ICNA

ACNA INA

ANASWA

CWA

CNA

ASUR

SASUR

WA

CUR NA

ERM

RM

UR

Figure 4: Some subvarieties of NA ordered by inclusion

(Prefixes A, I, C, S applied to NA,WA,SA,RA)
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Jónsson [82] shows that ΛTGRA has uncountably many subvarieties (that also satisfy
the identity x3 = x2). Further results about the cardinality and structure of some intervals
in ΛRRA are proved by Andréka, Givant and Németi [91]. For example they show that the
Boolean algebra of all subsets of ω is completely embedable into an interval of ΛRRA.

Some of the varieties in Figure 2 are not known to be distinct. R. Lyndon [59] proved
that TRRA is a proper subvariety of TRA, and D. Monk [64] extended this result by
showing that TRRA is not even finitely based relative to TRA. (Both results are usually
stated for RRA and RA, and they of course imply corresponding results for PRRA and
PRA, where P is one of the properties I, C, S or N .) R. N. McKenzie [66] proved that
GRA is not finitely based relative to IRRA. In the last section of Chapter IV we observe
that NBGRA and NGRA are distinct. Table 2 lists some implications between ur-algebra
properties that are also reflected in Figures 3 and 4.

The following result from Jipsen, Jónsson and Rafter [a], describes a connection between
ur-algebras and their r-algebra reducts. In particular this result shows that the class of all
r-algebras that can be embedded in reducts of ur-algebras is a variety defined by finitely
many equations.

Theorem 3.2 For any r-algebra A, the following conditions are equivalent:

(i) A is embedable in an r-algebra with a unit.

(ii) Aσ has a unit.

(iii) For all x, y, z ∈ A,
x ≤ x ◦ (y/y)(z/z), x ≤ x ◦ (y\y),
x ≤ (y\y)(z\z) ◦ x, x ≤ (y/y) ◦ x.

We now outline a technique (from Jónsson and Tsinakis [a]) useful for deriving equivalent
formulations of r-algebra identities.

For a conjugated operation f , denote the conjugate by f c. It is easy to see that if f and
g are conjugated operations then f c, f + g (pointwise join) and the composite operation fg
(not the meet) are also conjugated with conjugates

f cc = f, (f + g)c = f c + gc and (fg)c = gcf c.

The first two equations imply that

f ≤ g iff f c ≤ gc,

where f ≤ g represents the identity f(x) ≤ g(x) for all x. To apply this to ur-algebras we
define the following translates and their conjugates

La(x) = a ◦ x Ra(x) = x ◦ a Qa(x) = a / x
Lc

a(x) = a . x Rc
a(x) = x / a Qc

a(x) = x . a.

An equation like (x ◦ y) ◦ z ≤ x ◦ (y ◦ z) can now be written in three different ways as

RzRy ≤ Ry◦z RzLx ≤ LxRz Lx◦y ≤ LxLy
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depending on whether we choose x, y or z as the variable for the translates. Taking conju-
gates, we obtain

Rc
yR

c
z ≤ Rc

y◦z Lc
xR

c
z ≤ Rc

zL
c
x Lc

x◦y ≤ Lc
yL

c
x.

Translating back to the language of r-algebras we have proved the first part of the following
result.

Lemma 3.3 The identities in each group below are equivalent.

(i)

(x ◦ y) ◦ z ≤ x ◦ (y ◦ z)
(x / z) / y ≤ x / (y ◦ z)
x . (y / z) ≤ (x . y) / z
(x ◦ y) . z ≤ y . (x . z)

(ii)

(x . y) ◦ z ≤ x . (y ◦ z)
y / (x / z) ≤ (y ◦ z) / x
x ◦ (y / z) ≤ (x ◦ y) / z
(x . y) . z ≤ y . (x ◦ z)

(iii)

(x / y) ◦ z ≤ x ◦ (y . z)
(x / z) ◦ y ≤ x / (y . z)
(y / z) . x ≤ z / (x . y)
(x / y) . z ≤ y ◦ (x . z)

The identities in (ii) are equivalent forms of the Euclidean law

(x . y)(u / z) 6= 0 implies (x ◦ u)(y ◦ z) 6= 0

that is studied in a contemporary approach to geometry by Prenowitz [61]. The first identity
of (iii) is derived from (half of) the relation algebra identity (x ◦ y`) ◦ z = x ◦ (y` ◦ z).
Reversing the inequality symbol gives another set of equations equivalent in groups of four.
All of these equations hold in RA, and in NA they are all equivalent.

Discriminator ur-algebras. We now address the question which varieties in Figures 3
and 4 are discriminator varieties. A. Tarski showed that RA has a discriminator term
c(x) = 1 ◦ x ◦ 1. R. D. Maddux [78] proves the same term c is also a discriminator term
for SA. For the larger variety WA, however, Maddux shows that there are subdirectly
irreducible members that are not simple, hence WA is not a discriminator variety.

An r-algebra is integral if for all elements x, y the condition x ◦ y = 0 implies x = 0 or
y = 0.

Lemma 3.4 An r-algebra A is integral if and only if the term c(x) = x . 1 is a unary
discriminator for A.
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Proof. Assume A integral and let x be a nonzero element of A. Then the conditions

(x . 1)y = 0, x ◦ y = 0 and y = 0

are equivalent, whence x . 1 = 1. Conversely, if x . 1 is a unary discriminator then x 6= 0
and y 6= 0 imply (x . 1)y 6= 0, hence x ◦ y 6= 0. 2

Theorem 3.5 Let IR be the variety generated by all integral r-algebras.

(i) IR is the largest variety of r-algebras for which c(x) = x . 1 is a unary discriminator
in all its subdirectly irreducible members.

(ii) An equational basis for IR relative to the variety of all r-algebras is given by the
equation x+ τ(x . 1) ≤ x . 1.

Proof. (i) is a consequence of Lemma 3.4, and (ii) follows from Theorem 2.4 once we
observe that 0 . 1 = 0 and that τ is selfconjugate for r-algebras. 2

We now list some properties that hold in all ur-algebras.

Lemma 3.6 For any x, y, u, v in a ur-algebra with u, v ≤ e we have

(i) x ≤ y ◦ u implies x = x ◦ u,

(ii) (x ◦ u)y = (y ◦ u)x,

(iii) x / u = x ◦ u and u . x = u ◦ x

(iv) u ◦ v = uv,

(v) (x ◦ u)v = (x . u)v = (x / u)v = (u ◦ x)v = (u . x)v = (u / x)v = xuv,

(vi) (1 ◦ u)x = x ◦ u and (u ◦ 1)x = u ◦ x.

Proof. (i) By assumption, x ≤ y ◦ u implies x ≤ y, so y = x+ yx−. Now

x ≤ y ◦ u = (x+ yx−) ◦ u = x ◦ u+ yx− ◦ u.

But x(yx− ◦ u) ≤ xyx− = 0, hence x ≤ x ◦ u ≤ x.
(ii) Let z = (y ◦ u)x ≤ y ◦ u. Then (i) implies that z = z ◦ u ≤ x ◦ u. Since we also have

z ≤ yx ≤ y, we get z = (y ◦ u)x ≤ (x ◦ u)y. For the reverse direction we simply interchange
x and y.

(iii) Conjugation and (ii) imply that the conditions (x / u)y 6= 0, (y ◦ u)x 6= 0 and
(x ◦ u)y 6= 0 are equivalent, hence x / u = x ◦ u.

(iv) First we note that u = u◦u since u = u◦e = u◦u+u◦eu− and u◦eu− ≤ uu− = 0.
Therefore uv = uv ◦ uv ≤ u ◦ v. Conversely u ◦ v ≤ (u ◦ e)(e ◦ v) ≤ uv.

(v) By additivity (x◦u)v = (xe◦u)v+(xe− ◦u)v = xuv since (xe− ◦u)v ≤ e−e = 0. By
(iii) we also have (x / u)v = xuv. Now (x . u)v = (xe . u)v + (xe− . u)v = xeuv + 0 = xuv,
again using (iii).

(vi) A direct calculation gives (1 ◦ u)x = (x ◦ u)x+ (x− ◦ u)x = x ◦ u. 2

Theorem 3.7 Let A = (A0, ◦, ., /, e) ∈ UR.
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(i) If A is integral then e is an atom.

(ii) If e is an atom and A is Euclidean then A is integral.

Proof. (i) follows immediately from Lemma 3.6 (iv).
(ii) Suppose e is an atom and A is Euclidean. We show x . 1 is a unary discriminator

term, whence A is integral by Lemma 3.4. For x 6= 0 we clearly have x(x ◦ e) = x 6= 0 and,
since e is an atom, it follows that e ≤ x . x. By the Euclidean identity

1 = e ◦ 1 ≤ (x . x) ◦ 1 ≤ x . (x ◦ 1) ≤ x . 1.

2

The notions of domain and range of a relation generalize for elements in a ur-algebra in
the following way. For x ∈ A let

xδ = e(1 / x) and xρ = e(x . 1)

be the domain and range of x respectively. With this definition, u = exδ− is the largest
element below e for which u ◦ x = 0 (see proof of (iii) below). We summarize some of the
properties of these operations:

Lemma 3.8 For any x in a ur-algebra

(i) x ≤ e implies xδ = x = xρ,

(ii) xδδ = xδ and xρρ = xρ,

(iii) xδ ◦ x = x = x ◦ xρ,

(iv) xδ = e(x / 1) and xρ = e(1 . x).

Proof. (i) follows from Lemma 3.6 (v), and (ii) is an immediate consequence of (i).
To prove (iii), we compute x = e ◦ x = xδ ◦ x + xδ−e ◦ x, and 1(xδ−e ◦ x) = 0 since
xδ−e(1/x) = xδ−xδ = 0. Finally, (iv) holds because the following statements are equivalent
by Lemma 3.6 (iii):

yxδ = 0 ye ◦ x = 0 ye . x = 0 ye(x / 1).

2

We now prove a general result about congruence lattices of modal algebras, and then
apply it to ur-algebras in which the unit element is the join of finitely many atoms.

Theorem 3.9 Let A = (A0, f) be a modal algebra and suppose that A satisfies the inclusion
x ≤ f(fn(x)u) for some (fixed) u ∈ A and n ∈ ω. Then

Con(A) ∼= Con(A0u, g
A)

where g(x) = fn+2(x)u.
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Proof. We will show that the maps

F (J) = Ju and G(K) = Af(K) = {x ∈ A : x ≤ f(y) for some y ∈ K}

map congruence ideals to congruence ideals and are inverses of each other. Since they are
also order preserving, the result follows.

Note that the inclusion x ≤ f(fn(x)u) implies f 2(x) ≤ f(g(x)), and therefore

fn+1(x) ≤ f(gn(x)). (4)

For any congruence ideal J of A, F (J) is clearly a Boolean ideal, and if x ∈ Ju then
fn+2(x) ∈ J , hence g(x) ∈ Ju. Now consider a congruence ideal K of (A0u, g

A). Again
G(K) is easily seen to be a Boolean ideal. So suppose x ∈ Af(K), whence x ≤ f(y) for
some y ∈ K. Then

f(x) ≤ f 2(y) ≤ f(fn+2(y)u) ≤ f(g(y))

and since g(y) ∈ K it follows that f(x) ∈ Af(K). This shows that F and G map congruence
ideals to congruence ideals.

Next we show that FG(K) = K. Let x ∈ FG(K) = Af(K)u. Then x ≤ f(y)u for some
y ∈ K, hence

x ≤ f(fn(x)u)u ≤ fn+1(x)u ≤ fn+2(y)u = g(y) ∈ K.

Conversely, for any x ∈ K, we have x ≤ u, hence x ≤ f n+1(x) ≤ f(gn(x)), where the last
inclusion follows from (4) above.

Finally we have GF (J) = J since Af(Ju) ⊆ f(J) ⊆ J , and for any x ∈ J , x ≤
f(fn(x)u) ∈ f(Ju), hence x ∈ Af(Ju). 2

Recall that for a BAO A = (A0,F) of finite type Con(A) is isomorphic to Con(A0, τ
A),

where τ is the join of all (1, i)-translates of f ∈ I, i < ρ(f).

Corollary 3.10 Suppose A is a ur-algebra, and let g(x) = τ 3(x)e. Then

Con(A) ∼= Con(A0e, g
A).

Proof. The result will follow from the previous theorem with f(x) = τ(x) and n = 1
once we establish the inclusion x ≤ τ(τ(x)e). But this follows from Lemma 3.8 (iii) since
x = xδ ◦ x ≤ (1 / x)e ◦ 1 ≤ τ(τ(x)e). 2

Corollary 3.11 Any subdirectly irreducible ur-algebra A in which the identity element e
is the join of finitely many atoms is a discriminator algebra.

Proof. In this case the algebra (A0e, g
A) from the preceding corollary is a finite sub-

directly irreducible selfconjugated modal algebra. By Corollary 2.6 it is a discriminator
algebra and therefore simple. But then A is also simple by Corollary 3.10, whence Theo-
rem 2.5 implies that it is a discriminator algebra. 2
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If e is an atom of A then one can easily show by a direct calculation that c(x) = (1.x)◦1
is a unary discriminator. Note also that e is an atom of A if and only if A satisfies the
universal sentence

for all x ∈ A either ex = 0 or ex− = 0.

Using steps (A)-(C) at the end of the first section of Chapter II to translate this into an
equation and combining it with Theorem 2.4 we obtain the following result.

Theorem 3.12 Let AUR be the variety generated by all ur-algebras in which e is an atom,
and let c(x) = (1 . x) ◦ 1. Then the following equations form a basis for AUR relative to
the variety of all ur-algebras:

x+ τ(c(x)) ≤ c(x) and c(c(ex)− + c(ex−)−) = 1.

We now turn to rm-algebras, i.e. ur-algebras that are associative with respect to ◦. The
main result (Corollary 3.15) is that the variety of commutative rm-algebras is a subvariety
of AUR.

Lemma 3.13 For any x, u, v in an rm-algebra with u, v ≤ e we have

(i) (1 ◦ u)(1 ◦ v) = 1 ◦ uv and

(ii) (x ◦ u)(y ◦ v) = xy ◦ uv.

Proof. (i) (1 ◦ u)(1 ◦ v) = 1 ◦ v ◦ u = 1 ◦ uv by Lemma 3.6 (ii), (iv) and associativity.
(ii) Using (i) and Lemma 3.6 (vi) we calculate (x ◦ u)(y ◦ v) = (1 ◦ u)(1 ◦ v)xy =

(1 ◦ uv)xy = xy ◦ uv. 2

Note that the commutative law x ◦ y = y ◦ x is equivalent to x . y = y / x.

Theorem 3.14 Let A = (A0, ◦, ., /, e) be a commutative rm-algebra. Then 1 ◦ u is a
congruence element for any u ≤ e.

Proof. Let x = 1 ◦ u. Since A is commutative, it suffices to show that 1 ◦ x ≤ x, 1 . x ≤ x
and 1 / x ≤ x. By associativity 1 ◦ x = x. By Lemma 3.6 (iii) x = 1 / u, so

1 . x = 1 . (1 / u) = (1 . 1) / u = 1 / u = x

using an equivalent form of the associative identity (Lemma 3.3 (i)). Finally 1 / x = 1 / (1 ◦
u) = (1/u)/1 also follows from Lemma 3.3 (i). By commutativity (1/u)/1 = 1.(1/u) = x
as before. 2

Corollary 3.15 The variety CRM of all commutative rm-algebras is a discriminator variety,
and in the simple members e is an atom.

Proof. Suppose A is a commutative rm-algebra in which e is not an atom. Then there
exists a nonzero element u ≤ e such that v = eu− is also nonzero. By the preceding
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theorem u ◦ 1 and v ◦ 1 are congruence elements, and by Lemma 3.13 they are disjoint, so it
follows from the additivity of ◦ that they are compliments of each other. Now A is directly
decomposable by Theorem 2.2. Consequently e is necessarily an atom in any subdirectly
irreducible commutative rm-algebra, and hence the variety of all commutative rm-algebras
is a subvariety of AUR. By Corollary 3.11 AUR is a discriminator variety, and this property
carries over to all its subvarieties. 2

The previous result generalizes an unpublished result of C. Tsinakis, who proved that
the variety CERM of commutative Euclidean rm-algebras is a discriminator variety.

Categories and Euclidean rm-algebras. Here we show that certain rm-algebras can be
constructed as complex algebras of (small) categories. We then use this observation to show
that, in spite of the many examples of discriminator algebras and varieties of residuated
BAOs encountered so far, the variety of all Euclidean rm-algebras is not a discriminator
variety.

We aim to construct an rm-algebra that is not a discriminator algebra, so we need to
consider some specialized relational structures. A partial semigroup is a structure (U, ◦)
where ◦ is a partial binary operation on U such that whenever a ◦ b and (a ◦ b) ◦ c are
defined, then b ◦ c and a ◦ (b ◦ c) are defined, and conversely, and (a ◦ b) ◦ c = a ◦ (b ◦ c). Note
that the residuated complex algebra of a partial semigroup is an associative r-algebra, with
◦ defined on subsets of U in the usual way by

X ◦ Y = {x ◦ y : x ∈ X and y ∈ Y }.

A (small) category is a special kind of partial semigroup with a distinguished subset
E ⊆ U (of identity morphisms) such that E ◦ x = x ◦E = x. Thus the residuated complex
algebra of a category is a rm-algebra. But we get somewhat more since a category also has
to satisfy the property: whenever a ◦ b and b ◦ c are defined, then (a ◦ b) ◦ c (and a ◦ (b ◦ c))
is defined (see for example McKenzie, McNulty and Taylor [87]). This suggests considering
the following property for r-algebras:

a ◦ b 6= 0 6= b ◦ c implies (a ◦ b) ◦ c 6= 0 6= a ◦ (b ◦ c).

An r-algebra that satisfies this property will be called weakly Euclidean.
As mentioned before, an r-algebra is Euclidean if it satisfies the inclusion (a . b) ◦ c ≤

a . (b ◦ c) or equivalently if

(a . x)(y / c) 6= 0 implies (a ◦ y)(x ◦ c) 6= 0.

An r-algebra is strongly Euclidean if it satisfies the identity (a . b) ◦ c = a . (b ◦ c). Every
relation algebra is strongly Euclidean, and Jónsson and Tsinakis [a] show that conversely
every strongly Euclidean ur-algebra is a relation algebra.

The following lemma establishes a connection between Euclidean and weakly Euclidean
r-algebras.

Lemma 3.16 Let A be an r-algebra.

(i) If A is Euclidean then it is weakly Euclidean.
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(ii) Suppose A is atomic and weakly Euclidean. If (A0+, ◦) is a partial semigroup then
A is Euclidean.

Proof. (i) Since the Euclidean inclusion contains no complementation, it is preserved
under canonical extensions, so we may assume that A is atomic. Let a, b, c be atoms of
A0. If a ◦ b 6= 0 then (a . (a ◦ b))b 6= 0, hence (a . (a ◦ b)) ≥ b, and similarly if b ◦ c 6= 0
then ((b ◦ c) / c) ≥ b. Therefore (a . (a ◦ b))((b ◦ c) / c) 6= 0 and, since A is Euclidean,
(a ◦ (b ◦ c))((a ◦ b) ◦ c) 6= 0. So the weakly Euclidean property holds for all atoms of A, and
by additivity it extends to all of A.

(ii) Suppose (a . x)(y / c) 6= 0 for some atoms a, x, y, c ∈ A. Then there exists an atom
b ∈ A such that b ≤ a.x and b ≤ y/c, or equivalently x ≤ a◦b and y ≤ b◦c. By assumption
◦ is a partial operation, so we actually have x = a ◦ b and y = b ◦ c. From the associative
law it follows that x ◦ c = a ◦ b ◦ c = a ◦ y. Now A is assumed to be weakly Euclidean, hence
0 6= a ◦ b ◦ c = (a ◦ y)(x ◦ c). By additivity the Euclidean inclusion holds for all of A. 2

Note that the complex algebra of a small category is weakly Euclidean. From part (ii)
of the preceding lemma we can therefore deduce the following result.

Corollary 3.17 The residuated complex algebra of any small category is a Euclidean rm-
algebra.

R. D. Maddux [78] gives an example of a weakly associative relation algebra that is
subdirectly irreducible but not simple. However this example is not associative, which led
B. Jónsson to ask the question whether every subdirectly irreducible rm-algebra is simple.
The example below shows that this is not the case, even restricted to Euclidean rm-algebras,
hence the variety of all Euclidean rm-algebras is not a discriminator variety.

Recall that any quasi-order can be viewed as a category (the elements are the objects
and the pairs a ≤ b are the morphisms). The Euclidean rm-algebras that arise in this
way are in fact relative subalgebras of full relation algebras, relativized with respect to the
quasi-order relation.

Theorem 3.18 The complex algebra of the partial order of an infinite fence, viewed as a
category, is a subdirectly irreducible (Euclidean) rm-algebra that is not simple.

Proof. Let Z be the set of integers and denote by U the partial order of an infinite fence
over Z, i.e.,

U = {(m,n) ∈ Z2 : m = n or (m is even and |m− n| = 1)}.

Let A be the residuated complex algebra obtained from the structure (U, ◦, idZ), where ◦
is the partial operation

(m,n) ◦ (p, q) = (m, q) if n = p and (m, q) ∈ U
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and idZ = {(n, n) : n ∈ Z}. By Corollary 3.17, A is a Euclidean rm-algebra. Note that for
any (m,n) ∈ U we have

1 / (m,n) =

{

{(m,m)} if m 6= n or m is even
{(m,m), (m − 1,m), (m+ 1,m)} otherwise

(m,n) . 1 =

{

{(n, n)} if m 6= n or n is odd
{(n, n), (n, n− 1), (n, n+ 1)} otherwise.

If we now let a1 be any atom (m,n) and define a2i = (a2i−1.1).1 and a2i+1 = 1/(1/a2i) for
i = 1, 2, 3, . . ., then the ai form an unbounded increasing sequence which eventually exceeds
every atom.

If we denote the ideal of all finite joins of atoms of A by J , then it follows that any
nontrivial congruence ideal of A must contain J . On the other hand J is also a congruence
ideal, hence it is the smallest nontrivial congruence ideal of A and therefore A is subdirectly
irreducible but not simple. 2

Corollary 3.19 The variety ERM is not a discriminator variety.

Embedding r-algebras into complex algebras of partial algebras. A structure
U = (U, ◦, E) is a partial groupoid with identities if (U, ◦) is a partial groupoid, E ⊆ U and
a ◦E = a = E ◦ a. If such a subset E exists, then it is unique, and the complex algebra U+

is a ur-algebra.

Theorem 3.20

(i) Every r-algebra can be embedded in the complex algebra of a partial groupoid.

(ii) Every integral r-algebra can be embedded in the complex algebra of a groupoid.

(iii) Every ur-algebra can be embedded in the complex algebra of a partial groupoid with
identities.

Moreover, if the algebra is finite then the (partial) groupoid can also be taken as finite.

Proof. (i) Since the variety of all r-algebras is canonical, it suffices to consider a complete
and atomic r-algebra A = (A0, ◦, ., /). Let V be the set of all atoms of A0 and let
U = V × V . We want to define a partial binary operation ◦ on U such that the projection
U →→ V onto the first coordinate is a bounded morphism from (U, ◦, ◦2, ◦1) to A+, where ◦
is considered as a ternary relation R, and R2, R1 are as in the first section of Chapter II.
From the duality between structures and complete and atomic BAOs it then follows that
A is embedded in (U, ◦)⊕.

Since every set can occur as the carrier set of a group, there exist operations ∗ and −1

on V such that (V, ∗,−1 ) is a group. We define a partial binary operation ◦ on U by

(a, b) ◦ (c, d) = (b ∗ d, b) if b ∗ d ≤ a ◦ c.

By definition (a, b) ◦ (c, d) ≥ (u, v) implies a ◦ c ≥ u, and the same holds for . and /.
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Suppose a ◦ c ≥ u. We have to show that for any v ∈ V there exist b, d ∈ V such that
(a, b) ◦ (c, d) = (u, v). This is true since we may take b = v and let d = b−1 ∗ u. Then
u = b ∗ d ≤ a ◦ c, hence (a, b) ◦ (c, d) = (u, v).

Now suppose a . u ≥ c. We have to show that for any d ∈ V there exist b, v ∈ V such
that (a, b) . (u, v) ≥ (c, d), or equivalently (a, b) ◦ (c, d) = (u, v). In this case we choose
b = u ∗ d−1 = v.

Finally, if u / c ≥ a then, given any b ∈ V we take v = b and d = b−1 ∗ u to get
(u, v) / (c, d) ≥ (a, b).

(ii) The proof is a slight modification of the one above, where we now have to extend
the operation ◦ to the whole set U 2. Since we are assuming that the r-algebra A is integral,
there exists a choice function f : V 2 → V such that f(a, b) ≤ a ◦ b. Now we define a (total)
binary operation ◦ on U by

(a, b) ◦ (c, d) =

{

(b ∗ d, b)
(f(a, c), b)

if b ∗ d ≤ a ◦ c
otherwise.

The verification that the projection map is a bounded morphism is the same as before.
(iii) The idea of the proof is again the same as in the first part, except that atoms below

the identity need not be split. We let V = A0+ and define U = (A0e)+ ∪ ((A0e
−)+ × V ).

The map h : U →→ A0+ is now given by h((a, b)) = a and, for u ∈ (A0e)+, h(u) = u.
Again we let ∗ and −1 be operations on V such that (V, ∗,−1 ) is a group. The definition of
the partial operation ◦ on U has to be expanded in the appropriate way: for (a, b), (c, d) ∈
((A0e

−)+ × V ) and u, v ∈ (A0e)+

(a, b) ◦ (c, d) =

{

b ∗ d
(b ∗ d, b)

if b ∗ d ≤ (a ◦ c)e
if b ∗ d ≤ (a ◦ c)e−

u ◦ (c, d) = (c, d) if u ◦ c 6= 0
(a, b) ◦ v = (a, b) if a ◦ v 6= 0

u ◦ v = uv

The verification that h is a bounded morphism now splits into several cases, but is as
straight forward as before and will be omitted. 2

Let G, GP and GPe be the class of all groupoids, all partial groupoids and all partial
groupoids with identities. Using the notation Ka = Var({U+ : U ∈ K}) from Chapter II,
the above result shows that the variety of all integral r-algebras is IR = Ga, the variety of
all r-algebras is (GP )a and the variety of all ur-algebras is UR = (GPe)

a.

Decidable and undecidable varieties

Here we address the question which varieties in Figures 2, 3 and 4 have decidable equa-
tional theories. Tarski showed that the equational theory of any variety between RRA and
RA is undecidable. A proof of this result was first published in Tarski and Givant [87],
although the result itself dates back to the 40’s. Maddux [78] extends this result, prov-
ing that any variety between RRA and SA is undecidable. On the other hand, the larger
varieties WA and NA are shown to be decidable in Németi [87]. A proof of this last re-
sult is also included below as an application of the notion of a (strongly) β-closed variety
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from the second section of Chapter II. In the same way we show that the other ‘nonasso-
ciative’ varieties in Figures 3 and 4 are decidable. In particular the variety of all integral
semiassociative relation algebras is decidable, since it is equal to the variety of all integral
ur-algebras. However the variety IRA of all integral relation algebras is not decidable. In
fact, S. Givant proved that if V is any subvariety of RA that contains the complex algebra
of Sω (the permutation group on ω) then V has an undecidable equational theory. Con-
sequently any variety between GRA and RA is undecidable. In this section we prove the
undecidability of any variety V that satisfies TRA ⊆ V ⊆ CRA. A recent result of Andréka,
Givant and Németi [a] shows that any subvariety of CRA that contains the complex alge-
bra of an infinite Boolean group (or infinitely many nonisomorphic finite Boolean groups)
is undecidable. Hence any variety between BGRA and CRA is undecidable.

For a ur-algebra A, let L(A) = {x ∈ A : e ≤ x = x ◦ x} be the set of all transitive
elements ≥ e.

Theorem 3.21 Let A be a commutative rm-algebra. Then L(A) = (L(A), ◦, ·, e) is a
lattice with least element e.

Proof. Let x, y ∈ L(A). Then

e ≤ e ◦ e ≤ x ◦ y = x ◦ x ◦ y ◦ y = x ◦ y ◦ x ◦ y and

e = ee ≤ xy = xy ◦ e ≤ xy ◦ xy ≤ (x ◦ x)(y ◦ y) = xy

hence L(A) is closed under the operations ◦ and meet. Since both operations are clearly
commutative, associative and idempotent we only have to check that the absorption laws
hold:

(x ◦ y)x ≤ x = (x ◦ e)x ≤ (x ◦ y)x and

xy ◦ x ≤ x ◦ x = x = e ◦ x ≤ xy ◦ x.

2

Conversely, given a lattice L = (L,∨,∧, e) with least element e, it is just as easy to
see that (L,∨, {e})⊕ is a commutative rm-algebra. However the following result, due to
Maddux [81], is much more useful. Recall that a lattice is modular if it satisfies the identity
x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z) (or its dual).

Theorem 3.22 For a simple commutative relation algebra A, let M(A) = {x ∈ A : e ≤
x = x` ◦ x} be the set of all equivalence elements of A that include e. Then M(A) =
(M(A), ◦, ·, e) is a modular lattice with least element e. Conversely, given any modular
lattice M = (M,∨,∧, e) with least element e, let

R = {(x, y, z) ∈M 3 : x ∨ y = x ∨ z = y ∨ z}

and define A(M) = (M,R, {e})⊕. Then A(M) is a simple totally symmetric relation algebra
and MA(M) is isomorphic to the ideal lattice I(M) of M.
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Proof. As for L(A), it is easy to see that M(A) is a lattice. The modular law follows from
conjugation (Lemma 2.3) since

x(y ◦ xz) ≤ y(x / xz) ◦ xz ≤ y(x ◦ x`) ◦ xz ≤ xy ◦ xz.

For the converse, note that A(M) is certainly a totally symmetric ur-algebra. To prove the
associative law, consider u ≤ (x ◦ y) ◦ z for u, x, y, z ∈ M . Then there exists v ∈ M such
that u ≤ v ◦ z and v ≤ x ◦ y, whence

u ∨ v = u ∨ z = v ∨ z and v ∨ x = v ∨ y = x ∨ y.

To show that u ≤ x ◦ (y ◦ z), we need to find w ∈M such that u ≤ x ◦ w and w ≤ y ◦ z, or
equivalently

u ∨ x = u ∨ w = x ∨ w and w ∨ y = w ∨ z = y ∨ z.

Using the modular identity it is not hard to show that w = (u ∨ x) ∧ (y ∨ z) satisfies the
requirements. For example

u ∨ w = u ∨ (u ∨ x) ∧ (y ∨ z) = (u ∨ x) ∧ (u ∨ y ∨ z)
= (u ∨ x) ∧ (u ∨ v ∨ x ∨ y ∨ z) = (u ∨ x).

It remains to check that I(M) and MA(M) are isomorphic. Let J be an ideal of M. For
any x ∈ J ◦ J , there exist y, z ∈ J such that x ∨ y = x ∨ z = y ∨ z, so x ≤ y ∨ z ∈ J and
therefore J is an equivalence element. On the other hand if J ∈ MA(M), then x, y ∈ J
implies

x ∨ y ∈ {x} ◦ {y} ⊆ J ◦ J = J

and z ≤ x implies z ∈ {x} ◦ {x} ⊆ J , hence J is an ideal of M. Finally we observe that
in both I(M) and MA(M) the meet is given by intersection, so the lattices are indeed
isomorphic. 2

We will use this result to interpret the equational theory of modular lattices into any
variety V of relation algebras that satisfies TRA ⊆ V ⊆ CRA. Since the equational theory
of modular lattices is undecidable (Freese [80], Herrmann [84]) it follows that all varieties
between TRA and CRA are undecidable. Originally this idea was used to show that SRA is
undecidable. S. Givant pointed out that the same argument is valid for the whole interval
of varieties. Also, since relation algebras are discriminator algebras, the above result can
already be deduced from the undecidability of the universal horn theory of modular lattices
(Hutchinson [73], Lipshitz [74]).

Previously A. Urquhart [84] proved by a more direct approach (using von Neumann
coordinatization) that certain relevance logics are undecidable. His methods can also be
used to deduce the above undecidability results. For example Urquhart outlines a proof of
the undecidability of the variety of all distributive lattice-ordered commutative semigroups.
Though his techniques require somewhat more work than our proof, they are clearly more
general and could probably be used to show that several other varieties of ur-algebras are
undecidable.
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Let ε be a lattice identity p ≤ q in the variables x0, . . . , xn−1. The terms p and q are
translated into relation algebra terms p̃ and q̃ by replacing every ∨ by ◦ and every ∧ by ·.
Let σε be the universal closure of the formula

e ≤ x0 = x`

0 ◦ x0 and . . . and e ≤ xn−1 = x`

n−1 ◦ xn−1 ⇒ p̃ ≤ q̃.

Lemma 3.23 A lattice identity ε holds in a modular lattice M if and only if the corre-
sponding universal sentence σε holds in A(M).

Proof. The antecedent of σε limits the variables to equivalence elements of A(M), i.e., to
elements of MA(M). Since a lattice and its ideal lattice satisfy the same lattice identities,
the statement follows from the isomorphism between I(M) and MA(M). 2

Theorem 3.24 Let V be a subvariety of CRA containing TRA. Then the equational theory
of V is undecidable.

Proof. Let ε be a lattice equation. Using the fact that CRA is a discriminator variety we
translate the universal sentence σε into an equation σ∗

ε as outlined at the end of the first
section of Chapter II. Then σ∗

ε holds in V iff σε holds in Si(V) iff ε holds in the variety of
all modular lattices (since every modular lattice occurs as M(A) for some A ∈ Si(V) by
Theorem 3.22). The latter variety is undecidable, hence it follows that V is also undecidable.
2

Recall the definition of a β-closed variety from the second section of Chapter II. We now
show that several of the finitely based varieties in Figure 2 are β-closed, hence generated
by their finite members and decidable.

Lemma 3.25 Let σ be one of the following sentences:

(i) ◦ is commutative.

(ii) ◦ is symmetric (x ◦ y = x . y).

(iii) ◦ is integral (x ◦ y = 0 implies x = 0 or y = 0).

(iv) ◦ is totally symmetric (x ≤ x ◦ x).

(v) x 6= 0 implies τn(x) = 1.

(vi) e is an atom (ex = 0 or ex− = 0).

Suppose A is a ur-algebra that satisfies σ and B0 is any finite Boolean subalgebra of A0

such that e ∈ B. Then Bβ is a ur-algebra and satisfies σ.

Proof. The condition that e ∈ B ensures that Bβ is a ur-algebra. Recall that x ◦β y =
β(x ◦ y) =

∏

{b ∈ B : x ◦ y ≤ b}. Therefore (i) and (ii) are clearly preserved. The key
observation for (iii)-(v) is that x ◦A y ≤ x ◦β y holds true for all x, y ∈ B. Finally, (vi) is
obvious. 2
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Theorem 3.26 Let V be a β-closed variety, and let V ′ be the subvariety generated by all
members of V that satisfy one of the conditions (i)–(vi) of the preceding lemma. Then V ′

is also β-closed.

Proof. For sentences (i)–(v) this follows immediately from the above lemma. For (vi), let
A ∈ Si(V ′) and suppose S is a finite subset of A. Since V is β-closed, there exists a finite
Boolean subalgebra B0 of A0 that contains S∪{e} and satisfies Bβ ∈ V, so obviously e ∈ B
is an atom and therefore Bβ ∈ V ′. 2

Corollary 3.27 If any of the prefixes A, I, C, S, T (see Table 1) are applied to a variety
that is β-closed, then the resulting variety is again β-closed. So in particular AUR, IUR,
CUR, SUR, TUR are generated by their finite members, and since they are also finitely
based, they are decidable.

A ur-algebra is weakly associative if it satisfies the equation xe ◦ 1 = (xe ◦ 1) ◦ 1. The
variety WA of all weakly associative relation algebras is the subvariety of NA defined by this
equation. The decidability of NA and WA was first proved by I. Németi [87]. Theorem 3.29
shows that for a strongly β-closed variety, the subvariety of all weakly associative members
is again β-closed.

Lemma 3.28 Suppose A ∈ UR and B0 is a finite Boolean subalgebra of A0.

(i) If A is weakly associative and xe ◦A 1 ∈ B for all x ∈ B then Bβ is also weakly
associative.

(ii) If A ∈ NA and x .A e ∈ B for all x ∈ B then Bβ ∈ NA.

Proof. (i) By assumption

(xe ◦β 1) ◦β 1 = (xe ◦A 1) ◦β 1 =
∏

{b ∈ B : (xe ◦A 1) ◦A 1 ≤ b} = xe ◦β 1.

since A is weakly associative. The proof of (ii) is similar. 2

The assumption that B contains all elements of the form xe ◦A 1 for x ∈ B is of course
critical, and we will see below how it can always be satisfied for the weakly associative
algebras in a strongly β-closed variety (as opposed to RA or SA that are not generated by
their finite members).

Theorem 3.29 Suppose V is a strongly β-closed variety of ur-algebras. Then the following
varieties are β-closed:

(i) the subvariety WV of all weakly associative members of V,

(ii) V ∩ NA,

(iii) V ∩ WA.
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Proof. (i) Suppose A ∈ Si(WV). For any finite subset S of A that contains all constants
of A, there exists a finite Boolean subalgebra B0 of A0 such that Bβ ∈ V. Let S′ =
S ∪ {ex ◦A e− : x ∈ B}. Since the elements in S \ S ′ are all below e−, the subalgebra B′

0

generated by S ′ satisfies the condition of Lemma 3.28 (i), hence B′β ∈ V ′. This shows WV
is β-closed.

(ii) Let A ∈ NA, and consider S and B0 as in (i) above. The set S ′ is defined as
S ∪ {x .A e : x ∈ B}. Now the subalgebra B′

0 generated by S ′ satisfies the conditions
of Lemma 3.28 because the map x 7→ x . e is an endomorphism in any nonassociative
ur-algebra. This was first proved in Maddux [82], and also in Jónsson and Tsinakis [91].

(iii) The proof of this is a combination of (i) and (ii). The set S ′ is defined as S∪{xe◦A

e− : x ∈ B} ∪ {x .A e : x ∈ B}. 2

Varieties of finite height

In this section we focus our attention on the bottom of the lattice ΛUR. The variety
O = Mod(0 = 1) of all one-element ur-algebras is the smallest element of this lattice. Any
finitely generated variety of ur-algebras can be thought of as ‘close’ to the bottom of ΛUR

since it follows from congruence distributivity and Jónsson’s Lemma that such varieties
have only finitely many subvarieties. Furthermore, by Baker’s finite basis theorem they
are definable by finitely many equations. Since the intersection of an infinite descending
chain of varieties cannot be finitely based, it follows that any variety that properly contains
a finitely based variety V, also contains a variety that covers V in ΛUR. Thus we may
endeavor to find all covers of a finitely based variety. Assuming that we are working our
way up from the bottom, it is enough to find all join irreducible covers of a finitely generated
variety, since the remaining covers are, by distributivity, joins of varieties of smaller height.
The following simple lemma helps us recognize join irreducible covers.

Lemma 3.30 Let V be a subvariety of a congruence distributive variety W. For A ∈ Si(W),
the following are equivalent:

(i) Var(A) is a (join irreducible) cover of V in ΛW .

(ii) V $ Var(A) and for all B ∈ HSPu(A) \ V we have A ∈ HSPu(B).

If A is finite then (ii) can be simplified to: V $ Var(A) and for all B ∈ HS(A) \ V we have
A ∼= B.

Proof. (i)⇒(ii) Suppose Var(A) covers V. Then V is obviously a proper subvariety of
Var(A), and if B ∈ HSPu(A) \ V then V $ Var(B) ⊆ Var(A), whence Var(B) = Var(A).
By Jónsson’s Lemma A ∈ HSPu(B).

(ii)⇒(i) Suppose (ii) holds, let V $ V ′ ⊆ Var(A) and consider B ∈ Si(V ′) \ V. Again
it follows from Jónsson’s Lemma that B ∈ HSPu(A), hence (ii) implies A ∈ HSPu(B) and
therefore Var(A) ⊆ V ′. 2

There are some obstacles to the approach of analysing the bottom of ΛUR by looking
for the covers small varieties. A finitely generated variety may have infinitely many covers,
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or some of the covers may not be finitely based. In the first case it is often impossible to
describe all the covers (they may form a nonrecursive or an uncountable set) and in the
second case the structure of ΛUR above nonfinitely based varieties is no longer discrete, in
the sense that such varieties are intersections of infinite descending chains of varieties.

It is easy to find infinitely many covers of O in ΛUR. The example below shows this
is also true in ΛCERM . Let Mn be the monoid (n,+n, 0), where n = {0, 1, . . . , n − 1} and
p+n q = min{p+ q, n− 1} is truncated addition in n.

Theorem 3.31 For each n ∈ ω

(i) M⊕
n ∈ CERM and

(ii) Var(M⊕
n ) is a cover of O.

Proof. (i) M⊕
n is obviously in CRM , and the Euclidean identity holds by Corollary 3.17.

(ii) M⊕
n is integral, hence simple. For n > 0, the term e−(e− ◦ e−) = {1} generates the

whole algebra, so M⊕
n has no proper subalgebras. By Lemma 3.30 it generates a variety

that covers O. 2

However Jónsson and Tarski [52] proved that in ΛRA there are exactly 3 atoms, gener-
ated by the algebras in Table 3. Andréka, Jónsson and Németi [91] point out that the proof
given there requires only the semiassociative identity, so the same result holds in ΛSA.

Theorem 3.32 Let ε1, ε2 and ε3 be the equations e = 1, e− ◦ e− = e and e− ◦ e− = 1
respectively.

(i) Every A ∈ SA can be decomposed uniquely (up to isomorphism) into direct factors
Aε1

, Aε2
and Aε3

, such that Aεi
|= εi (i = 1, 2, 3).

(ii) For any A ∈ Si(SA), the constants {0, e, e−, 1} form a subalgebra of A. The three
possible subalgebras are denoted by A1, A2 or A3 with the indices chosen so that
Ai |= εi (i = 1, 2, 3, see Table 3).

(iii) Var(A1) = Mod(ε1) has no join irreducible covers in ΛSA.

(iv) Var(A2) has exactly one join irreducible cover Mod(ε2) = Var(Re(2)) in ΛSA.

(v) Var(A3) has infinitely many join irreducible covers in ΛSA.

As mentioned above, (i), (ii) and (iii) are essentially in Jónsson and Tarski [52]. The
key result is of course the decomposition in (i), and then (ii) and (iii) are easy consequences.
By Lemma 3.6 (iv), the members of Mod(ε1) are Boolean algebras in disguise, with xy =
x ◦ y = x . y = x / y.

(iv) was first proved by R. D. Maddux and, independently, with our implementation of
the algorithm from the last section of Chapter II. Another proof can be found in Andréka,
Jónsson and Németi [91].

(v) is due to E. Lukács. The examples she gives are in fact symmetric, so the same
result holds in ΛISUR.
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The following result, due to R. D. Maddux [90], shows that there are only finitely many
covers generated by nonintegral semiassociative relation algebras.

Theorem 3.33 If A ∈ Si(SA) is nonintegral and has more than 4 elements then A has a
subalgebra isomorphic to N1, N2, N3, N4, B2 or B4 (see Table 4, 6).

For ΛRA and ΛSRA the problem of whether Var(A3) has finitely or infinitely many covers
is still undecided. In Jipsen and Lukács [a] it is shown that there are only finitely many
finitely generated covers that are subvarieties of the variety TRA of all totally symmetric
relation algebras (defined relative to SRA by the equation x ≤ x◦x). This result is extended
here to the variety NRA of neat symmetric relation algebras, which is generated by all simple
symmetric relation algebras that satisfy the universal sentence x ≤ x ◦ x or x(x ◦ x) = 0.

A simple way to describe small relation algebras is as subalgebras of complex algebras
of groups, if they have such a representation. In order to list the known relation algebras
that generate covers of Var(A3), we also introduce the following notation. For a group G,
let

S(G) = {x+ x` : x ∈ G+} and xs = x+ x`.

It is easy to see that if G is abelian then S(G) is in fact a subalgebra of G+. Table 4 is a list
of the known simple symmetric relation algebras that generate varieties covering Var(A3).
Andréka and Maddux [88] show that the finite representations given here are minimal,
except in the case of B7, which they show has a smallest representation as a subalgebra of
S(Z2

3), with atoms {(0, 1), (1, 0)}s , {(1, 1), (1, 2)}s and {(0, 0)}. For completeness we also
include a list of the 5 known integral nonsymmetric relation algebras that generate covers
of Var(A3) (Table 5). Figure 5 shows the position of the join irreducible varieties generated
by these algebras in ΛRA.

Recall that an element u in a relation algebra A is an equivalence element if u ◦ u = u
and u` = u. We say that an equivalence element u is nontrivial if e < u < 1.

Theorem 3.34(Jónsson [88]) If A is a relation algebra and u is an equivalence element in
A then u generates a finite subalgebra of A. If A is integral and u is a nontrivial equivalence
element then u generates a subalgebra isomorphic to B1, B2, B3 or B4.

Lemma 3.35 Let A be a relation algebra. For any a ∈ A, (a\a)(a\a)` is an equivalence
element containing e.

Proof. In any ur-algebra e ≤ a\a, and in any rm-algebra a\a is a transitive element. In a
relation algebra the intersection of a transitive element with its converse gives an equivalence
element. 2

In the subsequent results we frequently make use of the fact that every simple symmetric
relation algebra is integral. The next four lemmas appeared in Jipsen and Lukács [a]. For
completeness they are included here as well.

Lemma 3.36 Let A be a simple symmetric relation algebra. Then the following are
equivalent:
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RA

SRA

N2 N3 N4 C1
. . . C5 (· · · ?) B∞ B1

. . . B12N1

A1 A2 A3

O

Figure 5: Algebras that generate join irreducible varieties at the bottom of ΛRA

Table 3: Algebras that generate the three atoms of ΛSA

Name - Representation e− ◦ e−

A1 = Z+
1 = Re(1) 0

A2 = Z+
2 < Re(2) e

A3 < Z+
3 < Re(3) 1
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Table 4: Known symmetric algebras that generate covers of Var(A3)

Name - Repr. a b a ◦ a b ◦ b a ◦ b

B1 = S(Z4) {1}s {2} b+ e e a
B2 < S(Z6) {1, 3}s {2}s b+ e b+ e a
B3 < S(Z6) {1, 2}s {3} 1 e a
B4 < S(Z9) {1, 2, 4}s {3}s 1 b+ e a

B5 = S(Z5) {1}s {2}s b+ e a+ e e−

B6 < S(Z8) {2, 3}s {1, 4}s 1 a+ e e−

B7 < S(Z12) {1, 2, 5}s {3, 4, 6}s 1 1 e−

Name - Repr. a ◦ a b ◦ b c ◦ c a ◦ b a ◦ c b ◦ c

B8 < S(Z) 1 c− a+ e e− e− a

B9 = S(Z7) b+ e c+ e a+ e a+ c b+ c a+ b
B10 Nonrepr. c− c+ e a+ e a+ c b+ c a+ b
B11 Nonrepr. c− a− a+ e a+ c b+ c a+ b
B12 Nonrepr. c− a− b− a+ c b+ c a+ b

Name - Repr. generator x atoms an an ◦ am

B∞ < S(Z × Z) ({(1, 0), (0, 1)}s)2 xn(xn−1)−
∑n+m

i=|n−m| ai

xs = x+ x`, S(G) = {x+ x` : x ∈ G+}

Table 5: Known nonsymmetric algebras that generate covers of Var(A3)

Name - Repr. a a ◦ a a ◦ a` a` ◦ a

C1 < Z+
7 {1, 2,−3} e− 1 1

C2 < Q+ {q ∈ Q : q > 0} a 1 1
C3 = Z+

3 {1} a` e e

Name a ◦ a a ◦ a` a` ◦ a b ◦ b a ◦ b a` ◦ b

C4 a 1 b− 1 b a` + b

Name a ◦ a a ◦ a` a` ◦ a b ◦ b a ◦ b a` ◦ b c ◦ c a ◦ c a` ◦ c b ◦ c

C5 e− 1 1 (b+ c)− e− c−e− b− b−e− e− a
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Table 6: Nonintegral algebras that generate varieties of height 2 in ΛSA

Name - Repr. e1 e2

N1 = Re(2) {(0, 0)} {(1, 1)}
N2 < Re(3) {(0, 0)} {(1, 1), (2, 2)}
N3 < Re(4) {(0, 0)} {(1, 1), (2, 2), (3, 3)}
N4 < Re(5) {(0, 0), (1, 1)} {(2, 2), (3, 3), (4, 4)}

e1, e2, c, c
`, d1 and d2 are atoms or zero, where

e = e1 + e2, c = e1 ◦ 1 ◦ e2 and di = (ei ◦ 1 ◦ ei)e
−

(i) A has no nontrivial equivalence elements,

(ii) for any x ∈ A, 0 < x < e− implies x ◦ x−e− = e−,

(iii) A has no subalgebra isomorphic to B1, B2, B3 or B4.

Proof. Assume (i) holds. Let x ∈ A satisfy 0 < x < e− and define y = x−e−. By Lemma
3.35 and symmetry, x\x = (x ◦ x−)− is an equivalence element including e. Since A is
integral, x ◦ x− 6= 0 hence (x ◦ x−)

−
6= 1. We are assuming that A has no nontrivial

equivalence elements, so we have (x ◦ x−)
−

= e, thus x ◦ x− = e−. Now e− = x ◦ x− =
x ◦ (y+ e) = x ◦ y+ x implies that x ◦ y ≥ y. Interchanging x and y in the above argument,
we also get that x ◦ y ≥ x. Therefore x ◦ y ≥ e− and, since xy = 0, we have (x ◦ y)e = 0
whence x ◦ y = e−.

Now suppose (i) fails and let u ∈ A be a nontrivial equivalence element. Since A is
integral, e ≤ u. Then 0 < ue− < e−, and (ue− ◦ u)u− ≤ uu− = 0 implies (ue− ◦ u−)u = 0,
hence ue− ◦ u− ≤ u− < e−.

The equivalence of (i) and (iii) follows from Theorem 3.34. 2

Lemma 3.37 If A is a simple symmetric relation algebra that has no nontrivial equivalence
elements then x ◦ x+ x− ◦ x− = 1 for every element 0 < x < e−.

Proof. Let u = (x◦x+x− ◦x−)−. Since (x◦x)u = 0, it follows that (x◦u)x = 0 and hence
x ◦ u ≤ x−. Now (x− ◦ x ◦ u)u ≤ (x− ◦ x−)u = 0, which implies that (u ◦ u)(x ◦ x−) = 0. By
Lemma 3.36 we have e− ≤ x◦x− and therefore u◦u ≤ e. As a result u+e is an equivalence
element and, since we are assuming that all equivalence elements are trivial, u + e = 1 or
u+ e = e. However u ≤ e−, so the first case implies u = e− and hence e− ◦ e− = u ◦ u ≤ e.
But then

x ◦ 1 = x ◦ e− + x ◦ e ≤ e− ◦ e− + x ≤ e+ x < 1

contradicts the assumption that A is simple. Therefore u+ e = e, which implies u = 0 and
hence x ◦ x+ x− ◦ x− = 1. 2

Lemma 3.38 For any x in a simple symmetric relation algebra, x ◦x+x− ◦x− = 1 implies
x ◦ x = 1 or x− ◦ x− = 1.
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Proof. Suppose x− ◦ x− 6= 1 and let z = (x− ◦ x−)−. If x ◦ x+ x− ◦ x− = 1 then we have
z ≤ x ◦ x, hence (x ◦ x)z 6= 0 and therefore (z ◦ x)x 6= 0. It follows that

1 = (z ◦ x)x ◦ 1 = (z ◦ x)x ◦ x+ (z ◦ x)x ◦ x− ≤ x ◦ x+ z ◦ x ◦ x−.

Now z(x−◦x−) = 0 implies (z◦x−)x− = 0 whence z◦x− ≤ x, so 1 ≤ x◦x+z◦x◦x− ≤ x◦x.
2

Theorem 3.39 Let A be a simple symmetric relation algebra. If x◦x < 1 and x−e−◦x−e− <
1 for some 0 < x < e− then A has a subalgebra isomorphic to B1, B2, B3, B4 or A ∼= B5.

Proof. Let 0 < x < e−, y = x−e− and suppose A does not have a subalgebra isomorphic
to B1, B2, B3, B4. We will show that if x ◦ x < 1 and y ◦ y < 1 then x and y are in fact
atoms. The result then follows since B5 is the only 8 element simple symmetric relation
algebra that satisfies the preceding conditions.

By Lemmas 3.37 and 3.38, we have that 1 = x− ◦x− = (y+ e) ◦ (y+ e) = y ◦ y+ y+ e =
y◦y+y, and similarly 1 = x◦x+x. The meet of the two equations gives that x◦x+y◦y = 1
and we also obtain that 0 6= (x ◦ x)− ≤ x and 0 6= (y ◦ y)− ≤ y. Let us assume that one of
x and y, say x, is not an atom. Then there exist disjoint nonzero elements x1, x2 such that
x = x1 + x2 and x1 ≤ (x ◦ x)−. This implies x1(x ◦ x) = 0 and consequently x ◦ x1 ≤ y+ e.
In particular, x2 ◦ x1 ≤ e−(y + e) = y hence

x1 ◦ x1 ≤ x1 ◦ e ◦ x1 ≤ x1 ◦ x2 ◦ x2 ◦ x1 ≤ y ◦ y

and similarly x2 ◦ x2 ≤ y ◦ y. Therefore (y ◦ y)− ≤ x ◦ x = x1 ◦ x1 + x2 ◦ x2 + x1 ◦ x2

implies that (y ◦ y)− ≤ x1 ◦ x2. It follows that (x1 ◦ x2)(y ◦ y)− 6= 0 and consequently
x1((y ◦ y)− ◦ x2) 6= 0. Let u = x1((y ◦ y)− ◦ x2). We will show that u + e is a nontrivial
equivalence element, thus reaching a contradiction.

Certainly (u ◦ u)x ≤ (x1 ◦ x1)x = 0 by the choice of x1, so u ◦ u ≤ e + y. But
(u ◦ u)y ≤ (((y ◦ y)− ◦ x2) ◦ u)y ≤ ((y ◦ y)− ◦ x2 ◦ x1)y ≤ ((y ◦ y)− ◦ y)y = 0, since
(y ◦ y)(y ◦ y)− = 0. This shows that u ◦ u = e thus (u+ e)2 = u+ e, so by symmetry, u+ e
is indeed an equivalence element. 2

Corollary 3.40 If A is a simple symmetric relation algebra that has no subalgebra isomor-
phic to B1, B2, B3, B4, B5 then for all x ∈ A

x ◦ x < 1 implies x−e− ◦ x−e− = 1.

Theorem 3.41 Let A be a simple symmetric relation algebra and suppose a, b, c are disjoint
nonzero elements that join to e−. If 0 = a(b◦b) = b(c◦c) = c(a◦a) then A has a subalgebra
isomorphic to B1, B2, B3, B4, B9, B10, B11 or B12.

Proof. Since A is simple and symmetric, we always have e ≤ x◦x for x 6= 0 and x◦y ≤ e−

for disjoint x, y ∈ A. Suppose A has no subalgebra isomorphic to B1, B2, B3, B4. By
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Lemma 3.36 e− ≤ a ◦ (b + c) and, since a(a ◦ c) = 0 and b(a ◦ b) = 0, we obtain a ≤ a ◦ b
and b ≤ a ◦ c. From associativity and c(b ◦ c) = 0 it follows that

b ≤ (a ◦ b) ◦ c = a ◦ (b ◦ c) ≤ a ◦ (a+ b).

Since b(a ◦ b) = 0 we conclude that b ≤ a ◦ a. By analogous arguments, permuting a, b, c
cyclically, we obtain c ≤ b ◦ a, c ≤ b ◦ b, a ≤ c ◦ b and a ≤ c ◦ c.

We now show that either a ≤ a ◦ a or a(a ◦ a) = 0. To that end, suppose a = a1 + a2,
a1 ≤ a ◦ a, a2(a ◦ a) = 0 and a1 6= 0. Then a2(a1 ◦ b

−) = 0 and, by simplicity, a2 ≤ a1 ◦ 1 =
a1 ◦ b+ a1 ◦ b

−, whence a2 ≤ a1 ◦ b. On the other hand, from a1 ≤ a ◦ a and a ◦ b ≤ a+ c
we get

a2(a1 ◦ b) ≤ a2(a ◦ a ◦ b) ≤ a2(a ◦ (a+ c)) = 0.

So a2 is both below and disjoint from a1 ◦ b and therefore must equal 0. Again, relabelling
a, b, c cyclically, we obtain that b ≤ b◦b or b(b◦b) = 0, and c ≤ c◦c or c(c◦c) = 0. Therefore
A has a subalgebra isomorphic to B9, B10, B11 or B12 (see Table 4). 2

A simple relation algebra A is neat if either x ≤ x ◦ x or x(x ◦ x) = 0 for all x ∈ A. The
next result is an observation that will make the proof of Theorem 3.43 proceed somewhat
more smoothly. It also gives an indication why small subalgebras are easier to find in neat
symmetric relation algebras than in arbitrary symmetric relation algebras.

Lemma 3.42 Let A be a simple neat symmetric relation algebra. If there exists an element
x < e− such that x− ≤ x ◦ x < 1 then A has a subalgebra isomorphic to B1, B2, B3, B4,
B5 or B6.

Proof. Suppose A does not have a subalgebra isomorphic to B1, B2, B3, B4 and let
y = x−e−. Then x and y are nonzero and Lemma 3.36 implies that x ◦ y = e−. By
assumption x 6≤ x ◦ x, so x(x ◦ x) = 0 since A is neat. Lemma 3.39 implies that A has a
subalgebra isomorphic to B5 or y ◦ y = 1. In the latter case however A has a subalgebra
isomorphic to B6. 2

We now prove the theorem from which our main result about finitely generated covers
of Var(A3) follows. Note that for a finite ur-algebra A we can always find an element u
such that u is minimal with respect to the condition u ◦ u = 1.

Theorem 3.43 Let A be a simple neat symmetric relation algebra with more than 4
elements. If there exists an element u ∈ A such that u ◦ u = 1 and x ◦ x < 1 for all x < u,
then A has a subalgebra isomorphic to B1, . . . ,B7, B9, B10, B11 or B12.

Proof. Suppose A and u are as in the statement of the theorem and assume A has no
subalgebra isomorphic to B1, . . . ,B7. By Lemma 3.36 it follows that x ◦x−e− = e− for any
nonzero x < e−. Since we are assuming that A has more than 4 elements, Corollary 3.40
implies that u < e−. Let a = u−e−, and observe that a ≤ a ◦ a or a(a ◦ a) = 0 because
A is neat. If u ≤ a ◦ a then A has a subalgebra isomorphic to B6 or B7, so we conclude
that u(a ◦ a)− 6= 0. Let u = b+ c where b ≤ a ◦ a and c(a ◦ a) = 0. Then c 6= 0 and, since
a(u◦a) = ae− 6= 0, we also have b 6= 0. Note that c(a◦a) = 0 and a ≤ e− = (a+b)◦c imply
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a ≤ b ◦ c. We now prove a series of claims that show A must have a subalgebra isomorphic
to B7, B9, B10, B11, B12.
Claim: a(c ◦ c) 6= 0. Suppose to the contrary that a is disjoint from c ◦ c. Then a(c ◦ c) = 0
and c(a ◦ a) = 0, hence (a + c)(a ◦ c) = 0 or equivalently a ◦ c ≤ b. Together with
a+ c ≤ e− = (a+ b) ◦ c, additivity implies a+ c ≤ b ◦ c. Similarly a+ c ≤ (a+ b) ◦ c implies
a+ c ≤ b ◦ c. Moreover, since b < u, we have b ◦ b < 1 and so it follows from Corollary 3.40
that (a+ c) ◦ (a+ c) = 1. Now a ≤ (a+ c) ◦ (a+ c) and a((a+ c) ◦ c) = 0 imply

a ≤ (a+ c) ◦ a ≤ (b ◦ c) ◦ a = b ◦ (c ◦ a) ≤ b ◦ b.

Similarly e− = a◦ (b+ c) implies a+ c ≤ a◦ b, and c ≤ (a+ c)◦ (a+ c) implies c ≤ c◦ (a+ c),
hence

c ≤ c ◦ (a+ c) ≤ c ◦ (a ◦ b) = (c ◦ a) ◦ b ≤ b ◦ b.

Finally, e + b ≤ a ◦ a ≤ (b ◦ c) ◦ a = b ◦ (c ◦ a) ≤ b ◦ b. So now b ◦ b = 1, contradicting the
assumption about u.
Claim: a ≤ c ◦ c. Suppose a = a1 + a2, a1 ≤ c ◦ c and a2(c ◦ c) = 0. By the previous
claim a1 6= 0. We show that the assumption a2 6= 0 leads to a contradiction. Since A is
neat, either a2 ≤ a2 ◦ a2 or a2(a2 ◦ a2) = 0. Suppose first that a2 ≤ a2 ◦ a2, and note that
c ◦ a2 ≤ b. Therefore

e+ a2 ≤ a2 ◦ a2 ≤ (b ◦ c) ◦ a2 = b ◦ (c ◦ a2) ≤ b ◦ b.

The assumption that A is neat further implies c ≤ (a2 + c)2 since (a2 + c)(a2 + c)2 6= 0. On
the other hand c(a◦a) = 0 = c(c◦a2), hence by additivity c ≤ c◦c. Also c ≤ e− = a2◦(u+a1)
and therefore c ≤ a2 ◦ b. Now

a1 + c ≤ c ◦ c ≤ (b ◦ a2) ◦ c = b ◦ (a2 ◦ c) ≤ b ◦ b.

Since b◦b < 1 and A is neat, this forces b(b◦b) = 0. But from a2 ≤ a2 ◦a2 we may conclude
that a2 +b ≤ (a2 +b)2 = a2 ◦a2 +a2 ◦b+b◦b and therefore b ≤ a2 ◦a2 +a2 ◦b = (a2 +b)◦a2.
Furthermore

b ≤ a ◦ a ≤ (b ◦ c) ◦ a = b ◦ (c ◦ a) ≤ b ◦ (b+ c)

and b(b ◦ b) = 0 imply b ≤ b ◦ c. Therefore

b ≤ (a2 + b) ◦ a2 ≤ (b ◦ c) ◦ a2 = b ◦ (c ◦ a2) ≤ b ◦ b

which contradicts b(b ◦ b) = 0.
So now we may assume that a2(a2 ◦ a2) = 0. Then a2(a2 + c)2 = 0 and, since A is neat,

c(a2 + c)2 = 0. Now let b = b1 + b2 where b1 ≤ (a2 + c)2 and b2(a2 + c)2 = 0. From a2 ≤ b◦ c
we infer that b(a2 ◦ c) 6= 0 and hence b1 6= 0. If b2 = 0 then b = b2 ≤ (a2 + c)2. But then
x = a2 + c would satisfy the condition of Lemma 3.42, contradicting the assumption that
A does not have a subalgebra isomorphic to B1, . . . ,B7. Therefore b2 6= 0.

Since c(a ◦ a) = 0 and (b2 + a2 + c)(a2 + c)2 = 0 we have b−1 (a2 ◦ c) = 0 and hence
a2 ◦ c ≤ b1. This fact will be used several times below. Suppose first that b1(b1 ◦ b1) = 0.
Then e ≤ c ◦ c implies

b1(a2 ◦ a2) ≤ b1(a2 ◦ e ◦ a2) ≤ b1(a2 ◦ c ◦ c ◦ a2) ≤ b1(b1 ◦ b1) = 0
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and therefore b(a2 ◦ a2) = 0. Since b ≤ a ◦ a = a1 ◦ a1 + a1 ◦ a2 + a2 ◦ a2, we obtain

b =≤ a1 ◦ a ≤ (c ◦ c) ◦ a = c ◦ (c ◦ a) ≤ c ◦ (b+ c).

Similarly, since we are assuming that a2 6= 0, e ≤ a2 ◦ a2 implies

b1(c ◦ c) ≤ b1(c ◦ a2 ◦ a2 ◦ c) ≤ b1(b1 ◦ b1) = 0,

whence b(c ◦ c) = 0. From the previous calculation b ≤ c ◦ b + c ◦ c, so we conclude that
b ≤ c ◦ b. Earlier we noted that a ≤ c ◦ b and b−1 (a2 ◦ c) = 0, hence

b−1 = b−1 (a2 ◦ 1) ≤ a2 ◦ (a+ b) ≤ a2 ◦ (c ◦ b) = (a2 ◦ c) ◦ b ≤ b ◦ b.

Since A is neat, b2 ≤ b◦ b implies b ≤ b◦ b. But then b◦ b = 1, contradicting our assumption
about u.

So we conclude that b1 ≤ b1 ◦ b1. From neatness we get b1 + c ≤ (b1 + c)2 and, since
a2(c◦b

−
1 ) = 0, it follows that a2 = a2(c◦1) ≤ c◦b1. By assumption a1 ≤ c◦c, so now we have

b−2 ≤ (b1 + c)2. Let b2 = r+ s, r ≤ (b1 + c)2 and s(b1 + c)2 = 0. If r 6= 0 then b1 + c+ s < u
and s ≤ (b1 + c+ s)2 = 1 since A is neat. But this again contradicts our assumption about
u, so r = 0 and b2(b1+c)2 = 0. Now b2 ≤ a◦a and b2(a2◦a2) = 0 imply b2 ≤ a1◦a, and from
a1 ≤ c◦c and a(c◦a) = 0 we obtain b2 ≤ a1◦a ≤ c◦c◦a ≤ c◦(b+c). Since b2(c◦(b1+c)) = 0,
it follows that b2 ≤ c◦ b2. Furthermore b2(a1 ◦a2) ≤ b2(c◦ c◦a2) ≤ b2(c◦ b1) = 0. Therefore
a2(b2 ◦ a1) = 0 and together with a2(b2 ◦ (a2 + c)) = 0 and a2 ≤ e− = b2 ◦ (b1 + a+ c) we
get a2 ≤ b2 ◦ b1. Finally this leads to a contradiction since we now have

a2 ≤ b2 ◦ b1 ≤ (c ◦ b2) ◦ b1 = c ◦ (b2 ◦ b1) ≤ c ◦ (a+ b2)

as well as a2(c ◦ (a+ b2)) = 0. This proves the claim that a ≤ c ◦ c.

Claim: b is an atom. Suppose to the contrary that b = b1 + b2 with b1 and b2 both nonzero
and disjoint. Note that (a+ b1)

2 = 1 by Corollary 3.40, and a ≤ (b2 + c)2. If b1 ≤ (b2 + c)2

then neatness implies that A has a subalgebra isomorphic to B6 or B7, contrary to our
assumption. On the other hand b1(b2 + c)2 = 0 implies

b2 + c = (b2 + c)e− = (b2 + c)(b1 ◦ (a+ b2 + c)) ≤ b1 ◦ a,

and together with b1 ≤ a ◦ a ≤ (c ◦ c) ◦ a = c(c ◦ a) ≤ c ◦ (b+ c) we have b1 ≤ c ◦ b1. Now

b2 + c ≤ b1 ◦ a ≤ (b1 ◦ c) ◦ a = b1 ◦ (c ◦ a) ≤ b1 ◦ (b+ c)

and since (b2 + c)(b1 ◦ (b2 + c)) = 0 it follows that b2 + c ≤ b1 ◦ b1. But now a ≤ c ◦ c,
b1 ≤ c ◦ b1 and b2 + c ≤ b1 ◦ b1 imply (b1 + c)2 = 1 which contradicts our assumption about
u.

Therefore b1 = p + q, p ≤ (b2 + c)2, q(b2 + c)2 = 0 and both p and q are nonzero.
Suppose q = r+s with r ≤ (b2+c+p)2 and s(b2+c+p)2 = 0. If r 6= 0 then b2+c+p+s < u
and, since A is neat, (b2 + c + p + s)2 = 1, again contradicting our assumption about u.
Consequently r = 0 and hence q(p+ b2 + c)2 = 0. But now we let b′1 = q, b′2 = p+ b2 and
then obtain a contradiction as before for b1 and b2.
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Claim: b(c◦ c) = 0 and b ≤ c◦ b. Since b is an atom, the alternative would be that b ≤ c◦ c
or b(c ◦ b) = 0. However the second condition implies the first since

b ≤ a ◦ a ≤ (c ◦ c) ◦ a = c ◦ (c ◦ a) ≤ c ◦ (b+ c).

So a + b ≤ c ◦ c and, since c < u we have c ◦ c < 1. But then c satisfies the condi-
tions of Lemma 3.42, contrary to the assumption that A has no subalgebra isomorphic to
B1, . . . ,B6.
Claim: a(b ◦ b) = 0. Suppose to the contrary that a(b ◦ b) 6= 0 If a ≤ b ◦ b then c ≤ e− =
b ◦ (a+ c) and c(b ◦ c) = 0 imply c ≤ b ◦ a, hence

c ≤ b ◦ a ≤ (b ◦ c) ◦ a = b ◦ (c ◦ a) ≤ b ◦ (b+ c)

and therefore c ≤ b ◦ b. But now b− ≤ b ◦ b and by assumption b ◦ b < 1, so x = b satisfies
the conditions of Lemma 3.42. This contradicts the assumption that A has no subalgebra
isomorphic to B1, . . . ,B6.

Now suppose a = a1 + a2, a1 ≤ b ◦ b, a2(b ◦ b) = 0 and both a1 and a2 nonzero. We
will show that (a1 + c)2 = 1 and (a2 + b)2 = 1. From a ≤ c ◦ c and neatness of A we infer
that a + c ≤ (a1 + c)2. Moreover a ≤ e− = c ◦ (a + b) and a(c ◦ a) = 0 imply a ≤ c ◦ b,
hence a1(c ◦ b) 6= 0 and, since b is an atom, b ≤ c ◦ a1. Therefore (a1 + c)2 = 1. Also
a ≤ e− = a ◦ (b + c) and a(a ◦ c) = 0 imply a ≤ a ◦ b, hence a2(a ◦ b) 6= 0 and b ≤ a2 ◦ a.
Now

a ≤ b ◦ c ≤ (a2 ◦ a) ◦ c = a2(a ◦ c) ≤ a2 ◦ (b+ c)

and a(a ◦ c) = 0 imply a ≤ a2 ◦ b. Consequently a2(a2 ◦ b) 6= 0 and, since b is an atom,
b ≤ a2 ◦ a2. Finally, to see that c ≤ (a2 + b)2, we check that b ≤ b ◦ c, c ≤ e− = b ◦ (a+ c)
and c(b ◦ c) = 0 imply

c ≤ b ◦ a ≤ (b ◦ c) ◦ a = b ◦ (c ◦ a) ≤ b ◦ (b+ c)

and therefore c ≤ b ◦ b. Since we are assuming that B7 is not a subalgebra of A, this is
again a contradiction.
Claim: A has a subalgebra isomorphic to B9, B10, B11 or B12. By definition a, b, c are
disjoint nonzero elements that join to e− and c(a ◦ a) = 0. From the previous two claims
b(c ◦ c) = 0 and a(b ◦ b) = 0 hence the present claim follows from Theorem 3.41. 2

Corollary 3.44 The variety Var(A3) has 11 finitely generated join irreducible covers in
ΛNRA, generated by the algebras B1, . . . ,B7, B9, B10, B11 and B12.

Note that B8 is the only finite minimal relation algebra in Table 4 that is not neat. The
next lemma, and the theorem following are from Jipsen and Lukács [a].

Lemma 3.45 Let A be a simple symmetric relation algebra, and for u ≤ e− define a =
u−e−, b = u(u◦u) and c = u(u◦u)−. If a◦a = 1 and a ≤ (b◦b)(c◦c)(b◦c) then a generates
a subalgebra isomorphic to B8.

Proof. From the definition of b and c it follows that u = b + c and c(u ◦ u) = 0, hence
0 = c(b ◦ b) = c(b ◦ c) = c(c ◦ c) and consequently 0 = b(b ◦ c) = b(c ◦ c). Also b ≤ u ◦ u =
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b ◦ b+ b ◦ c+ c ◦ c and therefore b ≤ b ◦ b. By assumption a is below each of b ◦ b, c ◦ c and
b ◦ c, so we obtain b ◦ b = a+ b+ e, c ◦ c = a+ e and b ◦ c = a.

It remains to show that a ◦ b = e− = a ◦ c. By integrality we have b = b ◦ e ≤ b ◦ (c ◦ c) =
(b ◦ c) ◦ c ≤ a ◦ c, and similarly c ≤ a ◦ b. Now

a = c ◦ b ≤ c ◦ (b ◦ b) = (c ◦ b) ◦ b = a ◦ b
b ≤ c ◦ a ≤ c ◦ (b ◦ b) = (c ◦ b) ◦ b = a ◦ b and
a+ c ≤ a ◦ b ≤ (c ◦ c) ◦ b = c ◦ (c ◦ b) = c ◦ a

hence a ◦ b = e− = a ◦ c. 2

Theorem 3.46 Let A be a simple symmetric relation algebra, and suppose a is an atom
of A such that a ≤ e− and a satisfies a ◦ a = 1. Then either A ∼= A3 or A has a subalgebra
isomorphic to B3, B4, B6, B7 or B8.

Proof. If A has a nontrivial equivalence element, then Lemma 3.36 implies that A has a
subalgebra isomorphic to B3 or B4. On the other hand, if A has no nontrivial equivalence
element, then it follows that x ◦ x−e− = e− for all 0 < x < e−. So if we let u = a−e− then
either u = 0, in which case A ∼= A3, or u ≤ e− = a ◦ u. In the latter case, since a is an
atom, it follows that a ≤ u ◦ u. If u ◦ u = a + e or u ◦ u = 1 then we have a subalgebra
isomorphic to B6 or B7 respectively. Hence we may assume that u = b+ c, where b, c 6= 0,
b ≤ u ◦ u and c(u ◦ u) = 0. Note that e− = a + b + c, and a, b, c are disjoint and nonzero,
so e− = b ◦ (a + c) = b ◦ a + b ◦ c by Lemma 3.36. Then u(b ◦ c) ≤ u(u ◦ c) = 0 implies
that b + c = u ≤ b ◦ a. Since a is an atom we have a ≤ b ◦ b and a ≤ b ◦ c. Similarly
c ≤ e− = c ◦ (a+ b) = c ◦ a+ c ◦ b and c(c ◦ b) ≤ c(u ◦ u) = 0, hence c ≤ c ◦ a and therefore
a ≤ c ◦ c. Now we have satisfied all the assumptions of Lemma 3.45, so a generates a
subalgebra isomorphic to B8. 2

As another application of Lemma 3.45 above, the following result was proved by the
program implementing the algorithm from the last section of Chapter II. This result is
included to illustrate how the algorithm is applied. The proof, as found by the computer,
is reasonably short and is reproduced in the appendix. The assumptions on the algebra
B below are quite strong. The equation is equivalent to the statement that the unary
operation x ◦ x is selfconjugate in the relative subalgebra Be−.

Theorem 3.47 Let B be a finite simple symmetric relation algebra. If B has more than
4 elements and satisfies the equation xe−((xe− ◦ xe−)− ◦ (xe− ◦ xe−)−) = 0 then it has a
subalgebra isomorphic to B5, B6, B7 or B8.

A nonfinitely generated subvariety of height 2. W. Blok [76][79][80][80a] extensively
investigated the lattice of subvarieties of modal algebras and proved that for closure algebras
there are no nonfinitely generated subvarieties of finite height. However, already in the
variety defined by the two equations f 3(x) ≤ f2(x) and x ≤ f(x) Blok showed that there
are uncountably many subvarieties of height 2.
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We now give an example of an infinite simple symmetric relation algebra, denoted by
B∞, with the property that Var(B∞) has height 2 in ΛRA. At present this is the only
member of RM known to us with this property.

We begin with two technical lemmas, essentially from Jipsen and Lukács [a], about
subalgebras of residuated BAOs generated by special subsets, e.g. the set of all atoms, all
elements of finite height closed under the operators or ideals closed under the operators.

Lemma 3.48 Let A be a Boolean algebra and suppose f is a residuated operation on A
with conjugate f c. Then

(i) the equation f(x−) = (f(x)− + f(x−f cf(x)))f(1) holds;

(ii) for any subset X of A that is closed under +, ·, f, f c and relative complementation
(i.e. x, y ∈ X imply xy− ∈ X), if f(1) and f c(1) are in B = SgA(X) then B is closed
under f and f c.

Proof. (i) Let y = x−f cf(x) and z = f(x)f(y)−. Then

x−f c(z) ≤ x−f cf(x)f c(z) = yf c(z) = 0

since zf(y) = 0. Therefore zf(x−) = 0 or, equivalently, f(x−) ≤ z−. On the other hand,
since f is additive

f(x−) + z = f(x−) + f(x)f(y) + f(x)f(y)− = f(x−) + f(x) = f(1)

and, meeting on both sides with z−, we get f(x−) = z−f(1).
(ii) Under the assumptions on X, it is easy to check that B = X ∪ {x− : x ∈ X}, so

we only have to show that for all x ∈ X both f(x−) and f c(x−) are in B. For f(x−) this
follows from the equation in (i), since the elements y and z above are in X as well. The
relationship of conjugation is symmetric, so the same argument can be used to show that
B is closed under f c. 2

Lemma 3.49 Let A = (A0, ◦,
` , e) ∈ INA and suppose X is a subset of A that is closed

under +, ·, ◦,`, and relative complementation and contains e. If X has no largest element
then

(i) SgA0(X) = SgA(X);

(ii) if X ′ is a subset of A′ ∈ INA satisfying the above conditions and h : X → X ′ is a
lattice isomorphism that commutes with ◦ and ` then h extends to an isomorphism
between SgA(X) and SgA′

(X);

(iii) if X contains no nontrivial equivalence elements then SgA(X) has no nonconstant
finite subalgebras.

Proof. (i) Let B = SgA0(X). SinceX is closed under join and meet, B = X∪{x− : x ∈ X}.
From the integrality of A it follows that x ◦ 1 = 1 for any nonzero x ∈ X, so we can apply
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the preceding lemma with f(y) = Lx(y) = x ◦ y and conclude that B is closed under Lx.
Therefore x, y ∈ X implies x ◦ y− ∈ B and similarly x− ◦ y ∈ B.

We now show that x− ◦ y− = 1 for any x, y ∈ X. From the assumption that X has
no largest element we obtain a nonzero u ∈ X such that u ≤ x−. Then 1 = u ◦ 1 =
u ◦ y + u ◦ y− ≤ u ◦ y + x− ◦ y−, so it suffices to show that u ◦ y ≤ x− ◦ y−. Let v = u ◦ y
and choose a nonzero w ∈ X such that

w ≤ (x+ v ◦ y`)− = x−(v ◦ y`)−.

Again this is possible since x + v ◦ y` ∈ X and X has no largest element. Now w ◦ 1 = 1
and w(v ◦ y`) = 0 implies v(w ◦ y) = 0, hence v ≤ w ◦ y− ≤ x− ◦ y−.

(ii) The extension h̃ of h is defined by h̃(x) = h(x) and h̃(x−) = h(x)− for x ∈ X. This
is clearly a Boolean homomorphism from SgA0(X) to SgA

′

0(X) and h̃ commutes with ◦
and ` since the equations

x ◦ y− = (x ◦ y)− + x ◦ (x−(x` ◦ (x ◦ y))), x− ◦ y− = 1 and x−` = x`−

hold for all nonzero x, y ∈ X and in X ′.
(iii) Assume 0, e are the only equivalence elements in X. Let C be a finite subalgebra

of SgA(X) and define a to be the join of the elements C ∩X. Then a ◦ a ∈ C ∩X, hence
a ◦ a ≤ a and similarly a` ≤ a and e ≤ a. Therefore a is an equivalence element in X, and
thus by assumption a = e. This implies that C is a subalgebra of constants. 2

Corollary 3.50 Let A ∈ INA, let Y ⊆ A be a set of infinitely many pairwise disjoint
elements and suppose the set X of all finite joins of elements from Y is closed under ◦,`

and contains e. Then

(i) SgA0(Y ) = SgA(Y );

(ii) if Y ′ is a subset of A′ ∈ INA satisfying the above conditions and h : Y → Y ′ is a
bijection such that the additive extension of h to X commutes with ◦ and ` then h
extends to an isomorphism between SgA(Y ) and SgA

′

(Y ′);

(iii) If X contains no nontrivial equivalence elements then SgA(Y ) has no nonconstant
finite subalgebras.

Usually the notation xn is only defined for n ≥ 0. For the remaining part of this section
it is convenient to define xn = 0 if n < 0. So, for example, x0(x(−1))− = x0 = e.

Theorem 3.51 Let A = (Zω
2 ,+, 0)+ and let x = {ui ∈ Zω

2 : i < ω} where ui =
(0, . . . , 0, 1, 0 . . .) with the 1 in the ith position. Then B = SgA({x}) is an infinite one-
generated atomic subalgebra of A, with atoms an = xn(xn−1)− and multiplication table

am ◦ an =
∑

{ak : k = m− n+ 2i and i ≤ n} for m ≤ n < ω. (5)

Proof. By definition a0 = e = {0} and a1 = x. For each n, xn is the set of all sequences in
Zω

2 with exactly n−2i nonzero entries (i = 0, . . . , bn/2c), hence an is the set of all sequences
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with exactly n nonzero entries. From this observation (5) follows by an easy induction over
m and n. 2

By Corollary 3.50 the multiplication table (5) completely determines the structure of B,
and since the set of all finite joins of the ai has no nontrivial equivalence elements, B has
no nonconstant finite subalgebras. However it has a proper infinite subalgebra, generated
by b = x2, and we denote this algebra by B∞.

Theorem 3.52 The algebra B∞ = SgB({b}) has atoms bn = bn(bn−1)− and multiplication
table

bm ◦ bn =
m+n
∑

k=n−m

bk = bm+n(bn−m−1)− for m ≤ n < ω.

Proof. Examining the multiplication table (5), we see that x2 = e+a2 and hence bn = a2n.
The equations for bn above are exactly how the atoms with even indices multiply, so by
Corollary 3.50 these elements are the atoms of a subalgebra. 2

It is now easy to check that if y is any element in (a subalgebra of) an ultrapower of
B∞ then x2 generates a subalgebra isomorphic to A3 or B∞, whence Var(B∞) has height
2 in Λ (see Lemma 3.30). The following theorem proves somewhat more in that it deduces
this result from a finite set of universal sentences that are satisfied in B∞.

Theorem 3.53 Suppose A is a simple symmetric relation algebra that satisfies the universal
sentences

(i) x ≤ x2

(ii) e < x2 < 1 implies x2 < x4 < 1

(iii) 0 < y2 < 1 implies (x2 ◦ y2)/y2 = x2

(iv) e < z2 and x2 ≤ y2 < 1 imply

(x ◦ z)2(x2)− ◦ (y ◦ z)2(y2)− = (x ◦ z ◦ y ◦ z)2(x2 ◦ z2 ◦ y2−).

Any element a ∈ A that satisfies e < a2 < 1 generates an infinite subalgebra isomorphic to
B∞.

Proof. We first show that B∞ satisfies (i)–(iv). Suppose b, b0, b1, . . . are defined as in the
preceding theorem. Any element x ∈ B∞ is either a finite or a cofinite join of atoms. In
the latter case x2 = 1, and otherwise x ≤ bn for some n. If we assume n to be minimal,
then x2 = b2n. Therefore (i) and (ii) hold.

(iii) Suppose 0 < y2 < 1. If x2 = 1 then 1/y2 = (1− ◦ y2)− = 1, and if x2 = 0 then
0/y2 = (0− ◦ y2)− = 0 since B∞ is integral and y2 > 0. If 0 < x2 < 1, then x2 = bm for
some m and y2 = bn for some n. Therefore

x2 ◦ y2/y2 = ((bm ◦ bn)− ◦ bn)− = ((bm)−)− = x2.
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(iv) If z2 = 1 then both sides of the equation are 1, and if x = 0 then both sides are
0, so we may assume that 0 < x2, y2, z2 < 1. Then x2 = bm, y2 = bn and z2 = bk for
some m,n, k ∈ ω with m ≤ n. Therefore (x ◦ z)2(x2)− = (x2 ◦ z2)(x2)− = (bm+k)(bm)− and
(y◦z)2(y2)− = (bn+k)(bn)−. Now the left hand side of the equation is bm+n+2k(bn−m−k−1)−,
while the right hand side gives bm+n+2k(bm+k ◦ (bn)−). If m+ k ≥ n then both sides equal
bm+n+2k, and if m+ k < n then (bm+k ◦ (bn)−)− = bn−m−k−1, so again they agree.

Now suppose a ∈ A satisfies e < a2 < 1 and let b = a2. It follows from (i) and (ii) that

e < b < b2 < b3 < · · · ,

so the element b generates an infinite Boolean subalgebra with atoms b0 = e and bn =
bn(bn−1)−, and all finite and cofinite joins of these atoms. Using (iii) and (iv) we will show
that this Boolean subalgebra is closed under relative multiplication, in fact

bm ◦ bn = bm+n(bn−m−1)− for m ≤ n < ω.

Since this is the multiplication table for B∞, and since B∞ satisfies the sentences (i)-(iv),
this proves the result.

By associativity bn = (an)2(an−1)2
−
, so (iv) with x = am−1, y = an−1 and z = a gives

bm ◦ bn = (am)2(am−1)2
−
◦ (an)2(an−1)2

−

= (am ◦ an)2((am)2 ◦ (an−1)2
−
)

= bm+n((an−1)2/(am)2)−.

Therefore it suffices to show that (an−1)2/(am)2 = bn−m−1. For m < n this follows from
(iii):

(an−1)2/(am)2 = ((an−m−1)2 ◦ (am)2)/(am)2 = (an−m−1)2 = bn−m−1.

If m = n then x = y, and (ii) implies that A contains no nontrivial equivalence elements,
hence by Lemma 3.36 x2 ◦ x2− = e− whenever 0 < x2 < 1. Since a2 > e and A is simple,
we have x2 ◦ a2 ◦ y2− = e− ◦ a2 = 1 as required. 2

Relation algebras form a discriminator variety, so we can of course rewrite (i)-(iv) in
the form of equations. The above theorem proves that the finitely based variety defined by
these equations has a unique subvariety of height 2 generated by B∞. We do not known if
this variety and Var(B∞) are distinct, or even if Var(B∞) is finitely based.

Using the algorithm from the last section of Chapter II we have been able to prove that
if a simple totally symmetric relation algebra A has no finite nonconstant subalgebras then
there is an element a ∈ A such that an < an+1 for all n. (This does not follow directly from
Theorem 3.43, and since our present proof is long and unintuitive it is not included here.)
As a result, the subvariety generated by all simple members of TRA that satisfy (iii) and
(iv) has exactly 4 join irreducible subvarieties of height 2 generated by B4, B7, B12 and
B∞ respectively.

Symmetric subadditive r-algebras. Since ΛSRA is rather complicated, we now consider
further restrictions on r-algebras. Recall that a tense algebra is a BAO with two unary
operators f and f c that are conjugates of each other. A tense algebra is reflexive if it
satisfies x ≤ f(x), and hence also x ≤ f c(x). The next two results prove that the variety
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of reflexive tense algebras is equivalent to a certain subvariety V of totally symmetric r-
algebras. Therefore the lattice of subvarieties of V is isomorphic to the lattice of subvarieties
of reflexive tense algebras.

Theorem 3.54 Let A = (A0, f, f
c) be a tense algebra and define a binary operation ◦ on

A by

x ◦ y = f(xy) + xf c(y) + yf c(x).

Then (A0, ◦) is a symmetric r-algebra and satisfies the equation x ◦ x−y ≤ x + y. If A is
reflexive then the operations f, f c can be recovered from ◦ by the term functions

f(x) = x ◦ x and f c(x) = x+ x ◦ x−.

Proof. Note that z(x ◦ y) = 0 if and only if zf(xy) + zxf c(y) + zyf c(x) = 0 which is
equivalent to

xyf c(z) = 0 and zxf c(y) = 0 and zyf c(x) = 0.

Therefore ◦ is symmetric. To check that it satisfies the equation, we compute

x ◦ x−y = f(xx−y) + xf c(x−y) + x−yf c(x) ≤ 0 + x+ x−y = x+ y.

Now assume that A is reflexive. Then x ≤ f(x) implies x ◦ x = f(x) + xf c(x) = f(x), and
furthermore

x+ x ◦ x− = x+ f(xx−) + xf c(x−) + x−f c(x) = f c(x)

where we used x ≤ f c(x) in the last step. 2

A symmetric r-algebra is subadditive if it satisfies the equation x ◦ x−y ≤ x+ y.

Theorem 3.55 Let A = (A0, ◦) be a symmetric subadditive r-algebra and define f(x) =
x+ x ◦ x and f c(x) = x+ x ◦ x−. Then (A0, f, f

c) is a reflexive tense algebra, and if A is
totally symmetric then ◦ can be recovered from f and f c by x◦y = f(xy)+xf c(y)+yf c(x).

Proof. We show that yf(x) = 0 iff xf c(y) = 0, then (A0, f, f
c) is a tense algebra and by

definition it is reflexive. Suppose y(x+ x ◦ x) = 0. Then xy = 0 and x ◦ x ≤ y−, hence

y(x ◦ y−) = y(x ◦ xy−) + y(x ◦ x−y−) ≤ yy− + y(x+ x−y−) = 0.

This shows that x(y ◦ y−) = 0 and therefore x(y + y ◦ y−) = xf c(y) = 0. Conversely
xf c(y) = 0 implies xy = 0 and x ◦ y ≤ y. It follows that x(x ◦ y) ≤ xy = 0 and hence
yf(x) = 0.

Suppose now that ◦ is totally symmetric (x ≤ x ◦ x). Then

f(xy) + xf c(y) + yf c(x) = xy + xy ◦ xy + x(y + y ◦ y−) + y(x+ x ◦ x−)
= xy ◦ xy + x(y ◦ y−) + y(x ◦ x−)

and x ◦ y = xy ◦ xy + xy− ◦ xy + xy ◦ x−y + xy− ◦ x−y.
(6)
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The first three terms are below the corresponding terms in (6), and by subadditivity xy− ◦
x−y ≤ (x+ y)(y− ◦ y)(x ◦ x−) ≤ x(y ◦ y−) + y(x ◦ x−), hence x ◦ y is below (6). Conversely

x(y ◦ y−) = xy(y ◦ y−) + xy−(y ◦ y−)
≤ xy ◦ xy + xy−(y ◦ xy− + y ◦ x−y−)
≤ xy ◦ xy + xy−(y ◦ xy−) + xy−(y + x−y−)
x ◦ y

and similarly y(x ◦ x−) ≤ x ◦ y. Therefore x ◦ y = f(xy) + xf c(y) + yf c(x). 2

Corollary 3.56 The variety of totally symmetric subadditive r-algebras is equivalent to
the variety of reflexive tense algebras.

At this point it is worthwhile to examine the atom structure of a complete and atomic
member A of V. The only restrictions on the relation R = ◦+ = {(a, b, c) ∈ A0+ : a◦ b ≥ c}
are

(i) (a, a, a) ∈ R for all a ∈ A0+

(ii) (a, b, c) ∈ R implies (a, c, b), (c, b, a) ∈ R and

(iii) (a, b, c) ∈ R implies a = b or a = c or b = c.

(i) and (ii) express the fact that ◦ is totally symmetric, while (iii) is the rather severe restric-
tion that R include no ‘3-cycles’. The binary relation f+ of the tense algebra corresponding
to A is coded up in R by

(a, b) ∈ f+ iff (a, a, b) ∈ R.

To extend the interpretion of Theorem 3.54 to ur-algebras, we consider unital tense
algebras, defined as algebras of the form A = (A0, f, f

c, e), where e is a constant and A
satisfies the identities

f(xe) ≤ x and f c(e) = 1.

The first identity implies ef c(x) ≤ x, hence f(xe) + xf c(e) + ef c(x) = x. On the other
hand xe ◦ xe ≤ x and e+ e ◦ e− = 1 hold in any ur-algebra. These observations prove the
following result.

Corollary 3.57 The variety TSaUR of all totally symmetric subadditive ur-algebras is
equivalent to the variety of all reflexive unital tense algebras.

The integral ur-algebras in TSaUR correspond to reflexive unital tense algebras that
satisfy the condition x 6= 0 ⇒ f(x) + f c(x) = 1. By Theorem 2.4 the variety generated
by such unital tense algebras is defined relative to the variety of all reflexive unital tense
algebras by the equation ττ(x) ≤ τ(x), where τ(x) = f(x)+f c(x). Members of this variety
are called linear since in the atom structure of a simple, complete and atomic member, the
binary relation f+ has to satisfy a f+b or b f+a for all atoms a, b.

The variety of subadditive relation algebras is denoted by SaRA. Maddux [a], and
independently Tuza [91], show that the finite simple members of SaRA are characterized
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as integral symmetric ur-algebras in which the term function f(x) = x+ x ◦ x is a closure
operator, i.e., satisfies x ≤ f(x) = ff(x). We note that this is true for all members of SaRA,
but a purely algebraic proof of the associative law, given that f is a closure operator,
is tedious. Instead one may observe that subadditivity is equivalent to the implication
xy = 0 ⇒ x ◦ y ≤ x + y. Since this form involves no complementation, SaRA is closed
under canonical extensions and one can therefore use an argument as in Tuza [91] for the
atom structure of any complete and atomic member of SaRA.

Using a construction of Comer [83], Maddux completely describes the structure of these
algebras and shows that one can decide whether a finite simple member is representable
over a set or a group, and that these two notions coincide. The variety SaRA has other
interesting properties. In fact, SaRA

• is not locally finite,

• includes all symmetric 3-atom relation algebras,

• has infinitely many subvarieties,

• has infinitely many simple nonrepresentable members,

• has infinitely many simple representable members that are not finitely representable.

The last two items are from Maddux [78]. In conclusion we note that Corollary 3.57 and the
above remarks imply that TSaRA is equivalent to the variety of unital tense linear closure
algebras. From tense logic it is known that the variety of tense linear closure algebras
is generated by its finite members, and the same result holds for unital tense algebras.
(Alternatively, this can be proved using a slight modification of the Bβ construction of
Chapter II. Since fβ and f cβ may not be closure operators, we have to replace them by
their transitive closure computed in the finite Boolean algebra B0.) Therefore TSaRA is
decidable.

Some open problems

Problem 3.58 Are SWA or CWA discriminator varieties?

Problem 3.59 Let V be the variety generated by all residuated complex algebras of
monoids. Is V finitely based?

A positive answer to the following problem would give a finite basis.

Problem 3.60 Can every member of IERM be embedded in the complex algebra of a
monoid? (I.e. is V = IERM?)

Problem 3.61 Are any of EUR, RM, ERM, ARM, IRM, CRM, ICRM, IERM, CERM
decidable?
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Problem 3.62 Are the varieties indicated by ∗ in Figure 2 distinct?

Problem 3.63 Are any of the varieties CGRA, SGRA, BGRA, TGRA, Var(B∞), Var({A(M) :
M is a modular lattice} finitely based?

Problem 3.64 Let A be a simple BAO of finite type and suppose τA is selfconjugated. Is
A a discriminator algebra? (I.e. can the assumption that A has an atom in Theorem 2.5
be removed?

Problem 3.65 Does Var(A3) have infinitely many covers in ΛRA or ΛSRA?

Problem 3.66 With regards to the algebras B and B∞ of Theorem 3.52, is Var(B) a cover
of Var(B∞) in ΛSRA?

Problem 3.67 Does Var(A3) have infinitely many finitely generated covers in ΛTSaIUR?

Problem 3.68 Does SaRA have uncountably many subvarieties?

Problem 3.69 Does SaRA have a decidable equational theory?



CHAPTER IV

FURTHER RESULTS ABOUT RELATION ALGEBRAS

Representations of En(1, 2, 3)

R. D. Maddux [78] defined 8 sequences of symmetric ur-algebras called En(X) for each
subset X of {1, 2, 3}. We recall the definition here. Let n = {0, 1, . . . , n − 1} and for
i = 1, 2, 3 define

Ri = {(a, b, c) ∈ (n \ {0})3 : |{a, b, c}| = i}.

Triples of Ri are called i-cycles. Also let

R0 =
⋃

a∈n

{(0, a, a), (a, 0, a), (a, a, 0)}.

For each X ⊆ {1, 2, 3} the relation RX is R0 ∪
⋃

i∈X Ri and the symmetric ur-algebra
(n,RX , 0)

+ is denoted by En(X). Maddux [78] also lists for what n and X the algebras
En(X) are in SRA. In particular it is shown there that En(1, 2, 3) is in RRA for all
n. Using a probabilistic argument, Maddux later showed that these algebras are in fact
finitely representable and H. Andréka constructed explicit representations over finite base
sets. We now recall a result of R. C. Lyndon [59] and deduce from it that En(1, 2, 3) can
be embedded in the complex algebra of a finite abelian group.

Lyndon showed that a relation algebra can be constructed from the set of points in a
projective space P and that this algebra is representable if and only if P is embedable into
a projective space of dimension one more than the dimension of P. The algebra En(1, 3) is
obtained by this construction from a projective line that has n − 1 points, hence En(1, 3)
is representable if and only if there exists a projective plane of order n − 2 (i.e. with
n− 1 points on each line). From the Bruck-Ryser Theorem on the nonexistence of certain
projective planes, Lyndon deduced that En(1, 3) is nonrepresentable for infinitely many n
(the smallest value being 8). On the other hand, for every prime p there exists a projective
plane of order pn (constructed in the vector space GF (pn)3, where GF (pn) is the Galois
field of order pn), hence Epn+2(1, 3) is representable. From this result Lyndon obtains the
following explicit group representation for Epn+2(1, 3).

Theorem 4.1 Let F = GF (pn) = (Zn
p ,+,−, 0, ∗, 1) and denote the elements of F by

g0, g1, . . . , gpn−1 where g0 = 0 and g1 = 1. Define the set Li to be the ‘line of slope i’
(without the origin) in F×F, i.e.,

Li = {h ∗ (1, gi) : h ∈ F, h 6= 0} for i < pn,

and let Lpn be the vertical line {h ∗ (0, 1) : h ∈ F, h 6= 0}. Then {0}, L0, . . . , Lpn are the
atoms of a symmetric subalgebra B of (F 2,+, 0)⊕ and B is isomorphic to Epn+2(1, 3).

65
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Proof. For each i, Li ∪ {0} is a subspace of the vector space F2 over F, hence Li ◦ Li =
Li ∪ {0} (or = {0} if F = Z2) and L`

i = {−1 ∗ v : v ∈ Li} = Li. On the other hand, since
F2 is 2-dimensional, any two vectors from distinct Li and Lj span the whole space, whence

Li ◦ Lj =
⋃

{Lk : k ≤ pn, k 6= i, j}.

Therefore the relation ◦+ is indeed isomorphic to R{1,3} under the map Li 7→ i + 1 and
{0} 7→ 0. 2

Thus Epn+2(1, 3) is a member of CGRA and, in fact, representable in a finite group.
The following observation shows how one can deduce the same result for En(1, 2, 3).

Theorem 4.2 En(1, 2, 3) is a subalgebra of Em(1, 3) whenever m > 2n−1, hence En(1, 2, 3)
is representable in a finite (Boolean) group for every n ∈ ω.

Proof. Note that En(1, 2, 3) is determined by the conditions a ◦ b = e− and a ◦ a = 1
for all distinct atoms a, b ≤ e−. Let e, a1, a2, . . . , am be the atoms of Em(1, 3), and define
bi = a2i−1+a2i for i = 1, . . . , n−1 and bn = a2n−1+. . .+am. Then the elements e, b1, . . . , bn
are atoms of a subalgebra isomorphic to En(1, 2, 3). 2

Clearly any set of m disjoint nonzero elements that join to e− in En(1, 2, 3) are atoms
of a subalgebra isomorphic to Em(1, 2, 3). Hence the varieties En = Var(En(1, 2, 3)) form
an increasing covering chain of varieties in TBGRA with

E1 = Var(A3) ≺ E2 = Var(B7) ≺ E3 ≺ E4 ≺ · · · .

Another consequence is that the subalgebra lattice of En(1, 2, 3) is isomorphic to the par-
tition lattice of an n-element set. Since the finite partition lattices generate the variety of
all lattices (a nontrivial result of Pudlak and Tuma [80]) we conclude that the subalgebra
lattices of complex algebras of finite abelian groups do not satisfy any nontrivial lattice
equations.

Relation algebras generated by equivalence elements

The theorem we prove in this section is a contribution to a collection of results about
what kind of subalgebras are generated by equivalence elements in a relation algebra. The
first result, from Jónsson and Tarski [52], shows that the special equivalence element e
always generates a finite representable subalgebra of constants and, in a simple relation
algebra, this subalgebra is isomorphic to A1, A2 or A3 (see Table 3 and Theorem 3.32).
Following that, Jónsson [88] proves a similar result for the subalgebra generated by any
single equivalence element, namely that this subalgebra is finite, representable and, in case
it is integral, isomorphic to A1, A2, A3, B1, B2, B3 or B4. One view of this result for an
equivalence element a in a relation algebra A is to consider the factor algebra a ◦ A ◦ a =
(a ◦ A ◦ a, ◦,` , a) in which a is now the identity element, so by the first result it generates
a finite subalgebra (in a ◦ A ◦ a). Also e generates a finite subalgebra in the relativized
subalgebra Aa, and now one can prove that these two algebras essentially determine the
structure of the subalgebra generated by a. The more general question, what is generated
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by the elements in a relativized subalgebra below an equivalence element, is treated in detail
in a monograph of S. Givant [a]. Included there is the following result.

Theorem 4.3 Let A be a relation algebra and X ⊆ A a set of equivalence elements such
that for all u, v ∈ X

u ≤ v or v ≤ u or uv = 0.

Then SgA(X) is representable, and if X is finite then SgA(X) is finitely representable
(hence finite).

So, for example, finite chains of equivalence elements generate finite representable re-
lation algebras. However, neither representability nor finiteness are necessary properties
of a relation algebra generated by an arbitrary finite set of equivalence elements. R. Lyn-
don’s nonrepresentable symmetric relation algebras, described in the preceding section, are
generated by equivalence elements (their atoms joined with e). With regards to finiteness,
B. Jónsson observed that one can construct an infinite simple symmetric relation algebra
generated by 4 equivalence elements from the free modular lattice on 4 generators using the
correspondence between modular lattices and equivalence elements in a symmetric relation
algebra (Maddux [81], included here as Theorem 3.22). H. Andréka and I. Németi give
an example (described in Givant [a]) of two commuting equivalence elements in a relation
algebra that generate an infinite subalgebra. The algebra in their example is not symmetric,
and we now show that this is necessarily so.

Theorem 4.4 Let A be a simple symmetric relation algebra. Then any two equivalence
elements in A generate a finite subalgebra of cardinality at most 26.

Proof. Suppose u and v are nonzero equivalence elements of A. Since we are assuming
that A is simple and symmetric, e is an atom and hence below both u and v. Let

a = uve−, b = ua−e−, c = va−e−, d = (u ◦ v)u−v− and w = (u+ v + d)−.

Since the case u ≤ v is covered by Theorem 4.3, we may assume that b and c are nonzero.
We will show that they are atoms of SgA(u, v), and that a, d, w are either zero or also atoms
of SgA(u, v). Since 1 = e + a + b + c + d + w, it follows that SgA(u, v) has cardinality at
most 26.

We begin by showing that most of the relative products between a, b, c, d, w are already
determined by the assumption that u = e+a+b and v = e+a+c are equivalence elements.
In fact the (partial) operation table for ◦ with respect to these elements is given in Table 7.

Entries of the form [x, y] in the table mean that the respective relative product has a
value in the interval [x, y] = {z : x ≤ z ≤ y}. The second half of the proof involves showing
that in such a case the relative product cannot ‘split’ any of a, b, c, d, w that are below yx−.

Note that in the table b◦c = d (as we will prove below). Since b and c are assumed to be
nonzero and A is integral, it follows that d is also nonzero. However a or w could be zero,
in which case the corresponding row and column of Table 7 are to be ignored. Furthermore,
our assumptions are invariant under interchanging b and c, so whenever we prove something
about b, a corresponding result holds for c.



68

Table 7: Partial operation table for A

◦ a b c d w

a [e, e + a] b c d w

b [e+ a, u] d [c, c+ d] w

c [e+ a, v] [b, b+ d] w

d [e+ a,w−] w

w [w−, 1]

Claim: If a 6= 0 then e ≤ a ◦ a ≤ e + a. The first inequality holds because A is integral,
and the second follows from the observation that e+ a = uv is an equivalence element.

Claim: If a 6= 0 then a ◦ b = b and a ◦ c = c. By definition a ◦ b ≤ u ◦ u ≤ u and, since
(e + a)(a ◦ b) = 0, we have a ◦ b ≤ b. By simplicity x ◦ 1 = 1 for any nonzero x, hence
b ≤ a ◦ 1 = a ◦ b+ a ◦ b−. But we just showed that b−(a ◦ b) = 0, consequently b(a ◦ b−) = 0
and therefore a ◦ b = b.

Claim: e + a ≤ b ◦ b ≤ u and e + a ≤ c ◦ c ≤ v. As in the previous claim, a ◦ b ≤ b and
hence a(b ◦ b−) = 0. Since b 6= 0 we have a ≤ b ◦ 1 = b ◦ b+ b ◦ b−, therefore a ≤ b ◦ b, and
of course we always have e ≤ b ◦ b. On the other hand, since u is an equivalence element,
b ◦ b ≤ u ◦ u = u.

Claim: b◦w = c◦w = d◦w = w, if a 6= 0 then a◦w = w and if w 6= 0 then w− ≤ w◦w. The
essential observation is that w− = u ◦ v is an equivalence element, whence w(w− ◦w−) = 0
and therefore x ◦ w ≤ w for any x ≤ w−. If x 6= 0 then the opposite inequality follows
from w ≤ x ◦ 1 = x ◦ w + x ◦ w− and w(x ◦ w−) = 0. Furthermore, if w 6= 0 then
w− ≤ w ◦ 1 = w ◦ w + w ◦ w−, and hence w− ≤ w ◦ w.

Claim: b ◦ c = d. In the previous claim we noted that w(w− ◦ w−) = 0, so in particular
w(b ◦ c) = 0. Moreover, u(b ◦ c) = 0 since c(b ◦ u) ≤ cu = 0, and similarly v(b ◦ c) = 0.
Therefore b ◦ c ≤ d. On the other hand

d = (u ◦ v)u−v− = (e+ u+ v + a ◦ a+ a ◦ b+ a ◦ c+ b ◦ c)(u+ v)− ≤ b ◦ c.

Claim: If a 6= 0 then a ◦ d = d. Since u, v are equivalence elements d(a ◦ u+ v) = 0, and
d(a ◦ w) = 0 follows from w(w− ◦ w−) = 0. Hence a ◦ d ≤ d. The opposite inclusion holds
because d ≤ a ◦ 1 = a ◦ d+ a ◦ d− and d(a ◦ d−) = 0.

Claim: c ≤ b ◦ d ≤ c+ d and b ≤ c ◦ d ≤ b+ d. We certainly have c ≤ b ◦ 1 = b ◦ d+ b ◦ d−,
and since d−(b ◦ c) = d−d = 0 we conclude that c ≤ b ◦d. The second inclusion follows from
the observation that d(b ◦ (u+ w)) = d(u+ w) = 0.

Claim: e + a ≤ d ◦ d ≤ w−. We argued earlier that d had to be nonzero, hence e + a ≤
d ◦ 1 = d ◦ d+ d ◦ d−. Since (e+ a) ◦ d ≤ d it follows that e+ a ≤ d ◦ d. Finally w(d ◦ d) = 0
holds because w(w− ◦ w−) = 0.

This concludes the first part of the proof. We now show that the partially determined
products cannot generated any new elements.
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Claim: a ≤ a ◦ a or a(a ◦ a) = 0. Suppose a = a1 + a2, a1 ≤ a ◦ a and a2(a ◦ a) = 0.
Then a1, a2 are disjoint, a ◦ a ≤ e+ a and a(a ◦ a2) = 0. Together these statements imply
a1 ◦ a2 = 0. Since A is integral, either a1 = 0 or a2 = 0.
Claim: b ≤ b ◦ b or b(b ◦ b) = 0. Suppose b = b1 + b2, b1 ≤ b ◦ b, b2(b ◦ b) = 0 and b2 6= 0.
Then b1 ≤ b2 ◦ a since b1 ≤ b2 ◦ 1 = b2 ◦ a+ b2 ◦ a

− and b1(b2 ◦ a
−) = 0. Also b1 ≤ b ◦ b and

b1(b ◦ b2) = 0 imply b1 ≤ b ◦ b1. Therefore

b1 ≤ b ◦ b1 ≤ b ◦ (b2 ◦ a) = (b ◦ b2) ◦ a ≤ (e+ a) ◦ a = e+ a

and consequently b1 = 0. Similarly c ≤ c ◦ c or c(c ◦ c) = 0.
Claim: d ≤ d ◦ d or d(d ◦ d) = 0. Suppose d = d1 + d2, d1 ≤ d ◦ d and d2(d ◦ d) = 0. Then
d1 ≤ d ◦ d1, hence

d2(d1 ◦ a) ≤ d2(d ◦ d1 ◦ a) ≤ d2(d ◦ d) = 0

where the second inequality holds since d◦a ≤ d (see Table 7). Also d ≤ d◦d1 ≤ (c◦b)◦d1 =
c ◦ (b ◦ d1) ≤ c ◦ (c+ d), and therefore d1(c ◦ c) = 0 implies d1 ≤ c ◦ d. Now

d2(d1 ◦ b) ≤ d2(d ◦ c ◦ b) = d2(d ◦ d) = 0

and similarly d2(d1◦c) = 0. Since d1, d2 are disjoint and d2(d◦d) = 0 we have d2(d1◦(e+d)) =
0. We already showed that d(d ◦ w) = 0, so we conclude that d2(d1 ◦ 1) = 0 and hence
d1 ◦ d2 = 0. By integrality it follows that either d1 = 0 or d2 = 0.
Claim: b ≤ d ◦ d or b(d ◦ d) = 0. Suppose b = b1 + b2, b1 ≤ b ◦ b, b2(b ◦ b) = 0 and
b2 6= 0. Then d ≤ b2 ◦ c, since d ≤ b2 ◦ 1 = b2 ◦ c+ b2 ◦ c

− and d(b2 ◦ c
−) = 0 (see Table 7).

Furthermore
b1 ≤ d ◦ d ≤ d ◦ (b2 ◦ c) = (d ◦ b2) ◦ c ≤ c ◦ c.

This however implies that b1 = 0 because b(c ◦ c) = 0.
Claim: w ≤ w ◦ w or w(w ◦ w) = 0. Suppose w = w1 + w2, w1 ≤ w ◦ w, w2(w ◦ w) = 0
and w1 6= 0. Then w2 ≤ w1 ◦ 1 = w1 ◦ w

−e− +w ◦ (e+w) and, since w2(w1 ◦ (e+w)) = 0,
it follows that w2 ≤ w1 ◦ w

−e−. From Table 7 we see that w ◦ w−e− = w, hence

w2 ≤ w1 ◦ w
−e− ≤ (w ◦ w) ◦ w−e− = w ◦ (w ◦ w−e−) = w ◦ w.

Since we assumed w2(w ◦ w) = 0 we now have to conclude that w2 = 0.
Claim: d ≤ b ◦ d or d(b ◦ d) = 0. Suppose d = d1 + d2, d1 ≤ b ◦ d and d2(b ◦ d) = 0. Then

d2(d1 ◦ a) ≤ d2(b ◦ d ◦ a) = d2(b ◦ d) = 0
d2(d1 ◦ b) = 0 by assumption
d2(d1 ◦ c) ≤ d2(b ◦ d ◦ c) ≤ d2(b ◦ (b+ d)) = 0
d2(d1 ◦ d) = d1(d2 ◦ b ◦ c) ≤ d1(c ◦ c) = 0 and
d2(d1 ◦ w) = 0 since d(d ◦ w) = 0.

Therefore d2(d1 ◦ 1) = 0, so d1 ◦ d2 = 0 and by integrality either d1 = 0 or d2 = 0. Similarly
d ≤ c ◦ d or d(c ◦ d) = 0. 2

Table 7 can be completed in several ways, depending on whether the terms

a, w, a(a ◦ a), b(b ◦ b), c(c ◦ c), and w(w ◦ w)
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are zero or not (the values of b(d ◦d), c(d ◦d) and d(d ◦d) are determined by these choices).
Altogether there are up to isomorphism 27 symmetric relation algebras generated by two
equivalence elements.

Problem 4.5 Do three equivalence elements in a symmetric relation algebra always generate
a finite subalgebra?

A nonrepresentable absolute retract in SRA

An algebra A is an absolute retract in a variety V if for every embedding f : A ↪→ B ∈ V
there exists a homomorphism g : B → A, called a retraction, such that gf = idA. In RRA
the absolute retracts are exactly the finite full relation algebras Re(n). This is mentioned
in Andréka, Jónsson and Németi [91], and it is shown there that these algebras are also
absolute retracts in the larger varieties RA and SA. However, it is not known whether there
are any others. Below we give an example of a nonrepresentable absolute retract in SRA.

A variety V is semisimple if all members of Si(V) are simple. The following well-known
result shows that for semisimple varieties the simple absolute retracts are exactly the maxi-
mal members of Si(V) (maximal in the sense that no member of Si(V) is a proper extension).

Lemma 4.6 Let V be a variety. Then

(i) any maximal member of Si(V) is an absolute retract in V;

(ii) if V is semisimple then any simple absolute retract in V is a maximal member of Si(V).

Proof. (i) Suppose A is maximal in Si(V) and suppose f is an embedding from A into
B ∈ V. By Zorn’s Lemma one can choose a maximal congruence θ on B that does not
identify any elements of f(A). Then B/θ ∈ Si(V) and A is embedded in B/θ. Since A is
maximal in Si(V), it is isomorphic to B/θ, hence the map x 7→ x/θ is (up to isomorphism)
the required retraction.

(ii) Suppose A ∈ Si(V) is an absolute retract in V. From the assumption that V is
semisimple, it follows that any extension of A in Si(V) is simple, hence the retraction onto
A must be an isomorphism. Therefore A is maximal in Si(V). 2

Note that in a discriminator variety all simple absolute retracts must be finite since an
infinite discriminator algebra A is a proper subalgebra of an ultrapower of A of suitably
high cardinality, and any ultrapower of A is also simple. The next result illustrates how
the above lemma is frequently applied. It is proved by essentially the same argument that
Andréka, Jónsson and Németi use for the corresponding result about Re(n). An element a
in a ur-algebra is functional if it satisfies a . a ≤ e.

Theorem 4.7 For every finite group G, the group relation algebra G+ is an absolute retract
in INA. In GRA every absolute retract is isomorphic to G+ for some finite group G.

Proof. In a nonassociative relation algebra every functional element is an atom since e ≥
(a1 + a2)

` ◦ (a1 + a2) = a`

1 ◦ a1 + a`

1 ◦ a2 + a`

2 ◦ a1 + a`

2 ◦ a2 implies a`

1 ◦ a2 = 0 and hence
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a1 = 0 or a2 = 0. Suppose A is the complex algebra of a finite group. Then every atom is
a functional element and therefore it is also an atom in any integral extension B ∈ INA of
A. Since A is finite, B must be isomorphic to A, hence A is maximal in Si(INA) and, by
Lemma 4.6, an absolute retract in INA.

Now suppose A is a simple absolute retract in GRA. Since GRA is generated by all
complex algebras of groups, A is a subalgebra of G+ for some group G. By Lemma 4.6 A
is maximal in Si(GRA), hence A is isomorphic to G+. 2

From the preceding theorem we can conclude that the symmetric relation algebras (Zn
2 )+

are absolute retracts in SRA. The lemma below provides us with stronger assumptions from
which we can conclude that an element in a member of Si(SRA) is an atom whenever it
satisfies these assumptions.

Lemma 4.8 Let A be a simple symmetric relation algebra, and suppose a, b, c ≤ e− are
pairwise disjoint, nonzero elements that satisfy a ◦ a = e+ b and b(b ◦ b) = 0.

(i) If e < b ◦ b then a is an atom.

(ii) b is an atom.

(iii) If a is an atom, a ◦ b = a+ c and b(c ◦ c) = 0 then c is an atom.

Proof. (i) Suppose a is not an atom, in which case we can write a = a1 + a2 for disjoint
nonzero a1, a2. We show that this forces b ◦ b = e. Since A is simple and symmetric, it is
also integral, hence e ≤ a1 ◦ a1 ≤ e+ b. Moreover, a1a2 = 0 implies b−(a1 ◦ a2) ≤ b−b = 0
and consequently a1 ◦ a2 ≤ b. By associativity

a2 ≤ e ◦ a2 ≤ (a1 ◦ a1) ◦ a2 = a1 ◦ (a1 ◦ a2) ≤ a1 ◦ b and hence

a2(a2 ◦ b) ≤ a2(a1 ◦ b ◦ b) ≤ a2(a1 ◦ b
−) = 0.

Therefore b(a2 ◦ a2) = 0 from which it follows that a2 ◦ a2 = e, and similarly a1 ◦ a1 = e.
Now

a ◦ a = a1 ◦ a1 + a1 ◦ a2 + a2 ◦ a2 = e+ a1 ◦ a2 = e+ b

implies that a1 ◦ a2 = b. Finally b ◦ b = a1 ◦ a2 ◦ a1 ◦ a2 = a1 ◦ a1 ◦ a2 ◦ a2 = e.
(ii) If b ◦ b = e then b is functional, hence cannot be split in an integral relation algebra.

On the other hand, if b◦ b > e then a is an atom by (i). Suppose 0 6= b′ ≤ b. Then b′ ≤ a◦a
implies a ≤ b′ ◦ a, so

b ≤ a ◦ a ≤ b′ ◦ a ◦ a ≤ b′ ◦ (e+ b) = b′ + b′ ◦ b

and since b(b ◦ b) = 0 we must have b ≤ b′. Hence b is also an atom.
(iii) Suppose 0 6= c′ ≤ c. Since a is assumed to be an atom, c′ ≤ a ◦ b implies a ≤ b ◦ c′.

Now
b ≤ a ◦ a ≤ a ◦ b ◦ c′ ≤ (a+ c) ◦ c′ = a ◦ c′ + c ◦ c′

and since b(c ◦ c) = 0 we have b ≤ a ◦ c′. Consequently

c ≤ a ◦ b ≤ a ◦ a ◦ c′ ≤ (e+ b) ◦ c′ = c′ + b ◦ c′
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and now b(c ◦ c) = 0 implies c ≤ c′. Therefore c is an atom. 2

Theorem 4.9 For every prime p, the symmetric relation algebra S(Zp) is an absolute
retract in SRA.

Proof. We show that S(Zp) is maximal in Si(SRA), then the result follows by Lemma 4.6.
Since S(Z2) = Z+

2 , this case is covered by Theorem 4.7, so we may assume that p > 2. Let
a be any atom below e−. Then a = {−n, n} for some nonzero n ∈ Zp, and b = e−(a ◦ a) =
{−2n(modp), 2n(modp)}. Therefore ab = 0, a ◦ a = e + b, b(b ◦ b) = 0 and e < b ◦ b. If
S(Zp) is embedded in any member of Si(SRA) then the images of a and b also satisfy these
requirements, hence the preceding lemma implies that the image of a is an atom. Since
S(Zp) is finite and atoms are mapped to atoms, the embedding is an isomorphism. 2

The previous result can be used to argue that the varieties NGRA and NBGRA are
distinct. For example the algebra B5 = S(Z5) ∈ NGRA is maximal in Si(SRA), hence it
cannot be a subdirect product of simple members of NBGRA.

Theorem 4.10 There exist non-representable absolute retracts in the variety of symmetric
relation algebras.

Proof. The atoms of B10 (see Table 4) satisfy the conditions of the Lemma 4.8. As in the
proof above, it follows that B10 is maximal in Si(SRA). Using techniques from Maddux [78]
this algebra is easily seen to be nonrepresentable. 2



APPENDIX

Discussion and description of the program

The computational aspect of this dissertation began with a program that counted finite
relation algebras. Several people assisted in this venture, most notably E. Lukács and S.
Tschantz. As the program became more sophisticated, so did the methods by which it
reduced the search space, eliminating those parts of the search tree that could never be
completed to a relation algebra. This development lead to the algorithm described in the
last section of Chapter III. In its present form the program is better suited to proving that
sets of axioms are inconsistent rather than finding models of such axioms.

Design and implementation. The algorithm is applicable to any type of Boolean algebras
with finitely many additional operations, but in practice it is only useful for a small number
of unary and binary operations. Some effort has been made to implement the algorithm
in a flexible manner. The current version allows for the analysis of modal algebras, tense
algebras, r-algebras, nonassociative relation algebras and symmetric relation algebras (the
last two types could be treated as r-algebras, but for reasons of efficiency they are separated
out).

The set EAn is not implemented explicitly. Instead the structure of binary numbers is
used to implicitly represent the Boolean algebras An. Initially A is the two-element Boolean
algebra. With statements like 1 = eu d, d = au b, etc., the atom 1 of A is split into new
constants of the language LAn that represent the atoms of An. The set E of universal
sentences is specified in the input, although some computationally intensive BAO axioms
(additivity, associativity) are coded into the program. The initial set C of inclusion and
exclusion formulas is also specified in the input file. The sets Cn are represented internally
by collections of linked lists of irredundant inclusion and exclusion formulas (2 list for each
operator). From these lists the upper and lower approximations (f µ and fλ) are calculated.

The program has three main components. The first component interprets the input
and sets up the initial parameters and formula lists for the root node. The second part
computes some (or all possible) proof trees originating from this root node. This is done
level by level in a breath first search, with various built-in options to heuristically limit the
search space. When (if) every branch in the tree terminates with an inconsistent node, the
third component of the program searches for, and prints out, the sequence of steps that
lead to the various inconsistencies. The proof in the next section shows how the output is
presented.

Program correctness. This is an important issue for any program, especially one that
claims to prove mathematical truths. At this point all verification of proofs produces by the
program is done by hand. We use the program as a tool rather than a complete solution.
Most proofs are unnecessarily long and tedious because the algorithm does not look for
subresults or symmetries that might simplify the argument.
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Sample output from the program

The proof below was found and typeset by the program based on the algorithm from
the last section of Chapter II. The first 11 lines are the input for the program. (The lines
numbered (1)-(6) are formulas universally quantified over x.) From this input the program
searches a tree of all possible proofs in the direction of likely contradictions and produces
the output lines 1-76.

A few explanatory remarks are needed to read the proof. The symbol ‘u’ below denotes
disjoint boolean join of nonzero elements (i.e. au b means a+ b where ab = 0 and a, b 6= 0).
An expression like a ? b◦ b signifies the start of three new subbranches corresponding to the
following (mutually exclusive) assumptions.

(i) a ≤ b ◦ b

(e) a·(b ◦ b) = 0 and

(s) a = a1 u a2, a1 ≤ b ◦ b, a2·(b ◦ b) = 0.

The result proved is Theorem 3.47. For convenience, the statement of this theorem is
repeated here. An outline of the proof tree is given in Figure 6.

Theorem Let B be a finite simple symmetric relation algebra. If B has more than 4
elements and satisfies the equation xe−((xe− ◦ xe−)− ◦ (xe− ◦ xe−)−) = 0 then it has a
subalgebra isomorphic to B5, B6, B7 or B8.

As mentioned before, several formulas of E are coded into the program, hence these
formulas are not specified in the input. For symmetric relation algebras the built-in formulas
are

(i) distributivity: x ≤ y ◦ (z + w) and x(y ◦ w) = 0 imply x ≤ y ◦ z,

(ii) conjugation: x(y ◦ z) = 0 implies y(x ◦ z) = 0,

(iii) commutativity (i): x ≤ y ◦ z implies x ≤ z ◦ y,

(iv) commutativity (e): x(y ◦ z) = 0 implies x(z ◦ y) = 0,

(v) associativity (i): u ≤ v ◦ z and v ≤ x ◦ y and y ◦ z ≤ w imply u ≤ x ◦ w,

(vi) associativity (e): u(x ◦ w) = 0 and y ◦ z ≤ w and v ≤ x ◦ y imply u(v ◦ z) = 0,

(vii) atom rule: x ≤ a ◦ y and a an atom implies a ≤ x ◦ y.

From the form of these rules it is apparent that they can be imposed directly on the lists
of inclusion and exclusion formulas for ◦. This results in a more efficient implementation
as compared with including equivalent equations in E and deriving inclusion and exclusion
formulas from them using Lemma 2.15 (iii) and (iv).

The diagrams of the symmetric relation algebras B1, . . . ,B12 are also coded into the
program. This allows the program to recognize them when they appear as subalgebras
during the search. Lemma 3.45 is used to recognize B8 early on, so that the formulas that
follow from the assumptions of this lemma do not have to be derived again.

We briefly indicate how the input is interpreted by the program. The first line designates
the letter x as a variable that ranges over the elements of An. The next line splits the top
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1 = eu e−

e− = au u

a ? u ◦ u

u ? u ◦ u contra. contra.

contra. contra.

contra. contra.

contra. contra.

a ? u1 ◦ u1

a ? u1 ◦ u2

a ? u2 ◦ u2B6B7

B8

i e s

i e s

i e s

i e s

i e s

Figure 6: An outline of the prooftree of Theorem 3.47
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element of A into two disjoint nonzero parts e and e−, that are atoms of As = An. The
third line stipulates that the constant e is an atom in any extension of An. The universal
sentence labelled (1) makes e the unit element of An. The restriction 0 ≺ x results in a
more efficient implementation of this sentence since by additivity it suffices if e is a unit
with respect to all atoms of An. The term ‘implement’ refers to the fact that this condition
can be implemented to give an inclusion and an exclusion formula (a ≤ a◦e and (a◦e)a− for
each atom a). ‘No reference’ indicates that these formulae will not be referred to explicitly
in the output, thereby reducing the length of the printout.

The universal sentence (2) is equivalent to the equation assumed in the statement of
the theorem. This sentence fails in the symmetric algebras B1, B2, B3 and B4. Therefore
Theorem 3.36 implies that we can add the third universal sentence. In the proof we also
assume that B5, B6, B7 and B8 are not subalgebras of B, whence (4) holds. The following
line splits e− into two disjoint nonzero parts a and u that are atoms of Ass. Since B is finite
and has no subalgebra isomorphic to B1, . . . ,B5, we can assume by Corollary 3.40 that a
is minimal with respect to the condition 1 ≤ a ◦ a. This is expressed by the last three lines
of the input. The restriction x ≺ a again improves the efficiency of the algorithm since it
limits the number of values that have to be substituted for x to check that (5) and (6) are
still compatible.

The output is indented to show the tree structure of the proof (cf. Figure 6). A standard
output line begins with a number, followed by an inclusion or exclusion formula, how it was
derived, and references of the form [n] to earlier lines that justify this derivation. Lines
that correspond to the start of three new subbranches have forward references to each of
the three subbranches. The computer generated output follows.

Input

var x

1 = eu e−

atom e

(1) 0 ≺ x ⇒ x ◦ e = x, (implement) (no reference)

(2) x < e− ⇒ x·((x ◦ x)− ◦ (x ◦ x)−) = 0, (implement)

(3) 0 < x and x < e− ⇒ e− ≤ x ◦ x−·e−, (implement)

(4) 0 < x and x < e− and x−·e− ◦ x−·e− < 1 ⇒ x ◦ x = 1, (implement)

e− = au u

1 ≤ a ◦ a by assumption

(5) x ≺ a ⇒ 1 ≤ x−·e− ◦ x−·e−, (implement)

(6) x ≺ a ⇒ x ◦ x < 1, (check)

Output

1 = eu e−

e− = au u

1 1 ≤ a ◦ a by assumption

2 e− ≤ u ◦ a from x = u and e− ≤ x ◦ x−·e−

3 e ≤ u ◦ u since u ≤ e ◦ u and e is an atom

4 a ?u ◦ u , (i5)(e60)(s62)

5 . a ≤ u ◦ u by assumption

6 . u ?u ◦ u , (i7)(e9)(s11)
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7 . u ≤ u ◦ u by assumption
8 . u generates B7 [2, 1, 7, 5, 3]

9 . u·(u ◦ u) = 0 by assumption

10 . u generates B6 [2, 1, 9, 5, 3]

11 . u = u1 u u2 by assumption

12 . u1 ≤ u ◦ u by assumption

13 . u2·(u ◦ u) = 0 by assumption

14 . e− ≤ (a+ u2) ◦ u1 from x = a+ u2 and e− ≤ x ◦ x−·e−

15 . e− ≤ u2 ◦ (a+ u1) from x = u2 and e− ≤ x ◦ x−·e−

16 . e ≤ u1 ◦ u1 since u1 ≤ e ◦ u1 and e is an atom

17 . e ≤ u2 ◦ u2 since u2 ≤ e ◦ u2 and e is an atom

18 . u ≤ u2 ◦ a since u ≤ u2 ◦ (a+ u1) and u·(u2 ◦ u1) = 0 [13, 15]

19 . u ≤ u1 ◦ a since u ≤ u1 ◦ (a+ u2) and u·(u1 ◦ u2) = 0 [13, 14]

20 . u1 ≤ u ◦ u1 since u1 ≤ u ◦ u and u1·(u ◦ u2) = 0 [13, 12]

21 . u1 ≤ u1 ◦ u1 since u1 ≤ u1 ◦ u and u1·(u1 ◦ u2) = 0 [13, 20]

22 . a ?u2 ◦ u2 , (i23)(e53)(s55)

23 . . a ≤ u2 ◦ u2 by assumption
24 . . a ≤ u2 ◦ (e+ a) since a ≤ a ◦ u , a ≤ u2 ◦ u2 and u2 ◦ u ≤ e+ a [13, 23, 2]

25 . . a ≤ u2 ◦ a since a ≤ u2 ◦ (e+ a) and a·(u2 ◦ e) = 0 [24]

26 . . a ?u1 ◦ u2 , (i27)(e38)(s40)

27 . . a ≤ u1 ◦ u2 by assumption

28 . . a ≤ u1 ◦ a since a ≤ u1 ◦ u2 , u1 ≤ u1 ◦ u1 and u1 ◦ u2 ≤ a [13, 21, 27]

29 . . a ?u1 ◦ u1 , (i30)(e32)(s34)

30 . . . a ≤ u1 ◦ u1 by assumption

31 . . . a generates B8 [27, 23, 17, 12, 5, 3, 28, 19, 13, 30, 21, 16, 1]
32 . . . a·(u1 ◦ u1) = 0 by assumption

33 . . . contradicts u1 ≤ a ◦ u1 [32, 19]

34 . . . a = a1 u a2 by assumption

35 . . . a2·(u1 ◦ u1) = 0 by assumption

36 . . . u1·((u2 + a2) ◦ (u2 + a2)) = 0 from x = u1 and x·((x ◦ x)− ◦ (x ◦ x)−) = 0
[35, 13]

37 . . . contradicts a2 ≤ u1 ◦ (u2 + a2) [36, 13, 27]

38 . . a·(u1 ◦ u2) = 0 by assumption
39 . . contradicts u1 ≤ a ◦ u2 [38, 18]

40 . . a = a1 u a2 by assumption

41 . . a1 ≤ u1 ◦ u2 by assumption

42 . . a2·(u1 ◦ u2) = 0 by assumption

43 . . e ≤ a1 ◦ a1 since a1 ≤ e ◦ a1 and e is an atom

44 . . u2 ≤ u1 ◦ a1 since u2 ≤ u1 ◦ a and u2·(u1 ◦ a2) = 0 [42, 19]

45 . . u1 ≤ u2 ◦ a1 since u1 ≤ u2 ◦ a and u1·(u2 ◦ a2) = 0 [42, 18]

46 . . u2 ≤ u2 ◦a1 since u2 ≤ a1 ◦u1 , a1 ≤ u2 ◦u2 and u2 ◦u1 ≤ a1 [42, 13, 23, 44]

47 . . a1 ≤ a1 ◦ a1 since a1 ≤ u2 ◦u1 , u2 ≤ a1 ◦u2 and u2 ◦u1 ≤ a1 [42, 13, 46, 41]
48 . . a1 ≤ u1 ◦a1 since a1 ≤ u1 ◦u2 , u1 ≤ u1 ◦u1 and u1 ◦u2 ≤ a1 [42, 13, 21, 41]

49 . . e+ a ≤ a1 ◦ a1 since e+ a ≤ u2 ◦ u2 , u2 ≤ a1 ◦ u1 and u1 ◦ u2 ≤ a1 [42, 13,
44, 23]
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50 . . e+ u1 ≤ a1 ◦ a1 since e+ u1 ≤ u1 ◦ u1 , u1 ≤ a1 ◦ u2 and u2 ◦ u1 ≤ a1 [42,
13, 45, 21]

51 . . u+ a2 ≤ a1 ◦ a1 since u+ a2 ≤ a1 ◦ u2 , a1 ≤ a1 ◦ u1 and u1 ◦ u2 ≤ a1 [42,
13, 48, 46]

52 . . contradicts x = a1 and x ◦ x < 1 [51, 50, 49, 47, 43]
53 . . a·(u2 ◦ u2) = 0 by assumption
54 . . contradicts u2 ≤ a ◦ u2 [53, 18]
55 . . a = a1 u a2 by assumption
56 . . a2·(u2 ◦ u2) = 0 by assumption
57 . . u2·((u+a2) ◦ (u+a2)) = 0 from x = u2 and x·((x ◦x)− ◦ (x ◦x)−) = 0 [56, 13]
58 . . u2 ≤ (u+ a2) ◦ (u+ a2) from x = a1 and 1 ≤ x−·e− ◦ x−·e−

59 . . contradicts u2·((u+ a2) ◦ (u+ a2)) = 0 [58, 57, 56, 13]
60 . a·(u ◦ u) = 0 by assumption
61 . contradicts u ≤ a ◦ u [60, 2]
62 . a = a1 u a2 by assumption
63 . a1 ≤ u ◦ u by assumption
64 . a2·(u ◦ u) = 0 by assumption
65 . e− ≤ a2 ◦ (u+ a1) from x = a2 and e− ≤ x ◦ x−·e−

66 . u·(a2 ◦ a2) = 0 from x = u and x·((x ◦ x)− ◦ (x ◦ x)−) = 0 [64]
67 . 1 ≤ (u+ a2) ◦ (u+ a2) from x = a1 and 1 ≤ x−·e− ◦ x−·e−

68 . e ≤ a1 ◦ a1 since a1 ≤ e ◦ a1 and e is an atom
69 . u ≤ (u+ a2) ◦ u since u ≤ (u+ a2) ◦ (u+ a2) and u·((u+ a2) ◦ a2) = 0 [66, 64, 67]
70 . a2 ≤ (u+ a2) ◦ a2 since a2 ≤ (u+ a2) ◦ (u+ a2) and a2·((u+ a2) ◦u) = 0 [66, 64, 67]
71 . u+ a2 ≤ a2 ◦ a1 since u+ a2 ≤ a2 ◦ (u+ a1) and (u+ a2)·(a2 ◦ u) = 0 [66, 64, 65]
72 . u+ a2 ≤ u ◦ a1 since u+ a2 ≤ u ◦ a and (u+ a2)·(u ◦ a2) = 0 [66, 64, 2]
73 . u ≤ a1 ◦ a1 since u ≤ (u+ a2) ◦ u , u+ a2 ≤ a1 ◦ a2 and a2 ◦ u ≤ a1 [66, 64, 71, 69]
74 . a2 ≤ a1 ◦ a1 since a2 ≤ (u+ a2) ◦ a2 , u+ a2 ≤ a1 ◦ u and u ◦ a2 ≤ a1 [66, 64, 72, 70]
75 . e+ a1 ≤ a1 ◦ a1 since e+ a1 ≤ u ◦ u , u ≤ a1 ◦ a2 and a2 ◦ u ≤ a1 [66, 64, 71, 63]
76 . contradicts x = a1 and x ◦ x < 1 [75, 74, 73, 68]
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