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Introduction

Classical propositional logic ≡ Boolean algebra

The standard Boolean algebra is {0, 1}, with operations

x ∧ y = min(x, y) x ∨ y = max(x, y) ¬x = 1 − x

x → y = max(1 − x, y) 1 = true 0 = false

The residuation equivalences relate conjunction and implication:

x ∧ y ≤ z ⇐⇒ x ≤ y → z ⇐⇒ y ≤ x → z

They imply the following properties:

• commutativity of ∧ • (x ∨ y)→z = (x→z) ∧ (y→z)

• distributivity of ∧ over ∨ • right-distributivity of → over ∧
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Fuzzy logic aims at finer control over degree of truth for statements.

Therefore use more truth values, such as the interval [0,1].

Don’t want to assume conjunction is always min.

So introduce a new symbol · called fusion for conjunction.

Want to retain some aspects of the residuation equivalences.

To avoid imposing commutativity on fusion, need two implications:

x · y ≤ z ⇐⇒ x ≤ y → z ⇐⇒ y ≤ x z

→, are generalized divisions so a more suggestive notation is

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z

Note: x → y = y/x and \ is another name for 
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Mirror image principle: Any statement about residuated structures

has an equivalent mirror image obtained by reading terms

backwards

i.e. replacing x · y by y · x and interchanging x/y with y\x.

Hence it suffices to state results in only one form.

A residuated poset 〈P, ·, \, /,≤〉 is a partially ordered set 〈P,≤〉

with three binary operations that satisfy the residuation

equivalences.

In many applications to logic there exists additional structure, such

as a constant 1 to denote true, and suprema and infima for finite

subsets of P .
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Fusion is assumed to be at least associative, so we get Dilworth’s

residuated lattices = algebras of the form 〈L,∨,∧, ·, 1, \, /〉 such

that

1. 〈L,∨,∧〉 is a lattice (∨, ∧ are commutative, associative and

mutually absorbtive)

2. 〈L, ·, 1〉 is a monoid (· is associative, with identity element 1)

3. The residuation equivalences: for all x, y, z ∈ L

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z

Since the first two properties are defined by identities, it is important

to note that this can also be done for the third:

3. is e.g. equivalent to x(x\z ∧ y) ≤ z, y ≤ x\(xy ∨ z)

and their mirror images.
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Note: x · y = xy is performed first, then \, / and finally ∨,∧.

s ≤ t is an abbreviation for the equivalent identity s = s ∧ t.

Therefore residuated lattices form a variety (also called equational

class), denoted by RL.

• L is not assumed to be bounded.

• 1 is not assumed to be the top element.

• · is not assumed to be commutative.

Such assumptions are handled by expanding the language with an

additional constant 0, and/or adding further identities.

A full Lambek algebra or FL-algebra is a residuated lattice with a

constant 0 (which can denote any element).

FL is the variety of all FL-algebras.
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A subvariety of a variety is a subclass that is defined by identities.

The collection of all subvarieties of a variety V forms a complete

lattice of subvarieties L(V)

V ∧W = V ∩W and V ∨W = Var(V ∪W)

where Var(K) is the smallest variety that contains class K.

This lattice is dual to a corresponding lattice of logics (more details

later).
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Important subvarieties of FL.

• FLw [Ono]: FL-algebras that satisfy 0 ≤ x ≤ 1.

• FLe [Ono]: FL-algebras with exchange, i.e. x · y = y · x.

In this case one usually writes x → y instead of x\y = y/x.

• DFL = distributive FL: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

• RFL = representable FL: subdirect products of linearly

ordered FL-algebras or equiv. [Blount Tsinakis] [J, Tsinakis 02]

satisfy 1 ≤ u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v.

• psMTL = pseudo monoidal t-norm algebras, or

weak-pseudo-BL algebras [Flondor Georgescu Iorgulescu 01]:

FLw-algebras that satisfy prelinearity: x\y ∨ y\x = 1 and

x/y ∨ y/x = 1.
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• FLew [Kowalski Ono 01] = FLe ∩ FLw .

• MTL = monoidal t-norm algebras [Esteva Godo 01]:

FLew-algebras that satisfy prelinearity.

• psBL = pseudo BL [Flondor Georgescu Iorgulescu 01],

[Di Nola Georgescu Iorgulescu 02]: psMTL-algebras that

satisfy divisibility (x ∧ y = x(x\y) = (y/x)x).

• BL = basic logic algebras [Hajek 98]: MTL-algebras that

satisfy divisibility.

• HA = Heyting algebras: FLw-algebras with x ∧ y = xy

• psMV = pseudo MV [Georgescu Iorgulescu 01]: pseudo

BL-algebras that satisfy x ∨ y = x/(y\x) = (x/y)\x.
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• MV = multi-valued logic algebras, or Łukasiewicz algebras

[Chang 59]: BL-algebras that satisfy ¬¬x = x

• GA = Gödel logic algebras, or linear Heyting algebras [Hajek

98]: BL-algebras that satisfy x · x = x

• PA = product logic algebras [Hajek 98]: BL-algebras that

satisfy ¬¬x ≤ (x → xy) → y(¬¬y).

• BA = Boolean algebras: Heyting algebras that satisfy

¬¬x = x

• BAn = subdirect products of the linearly ordered

n + 2-element Heyting algebra
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FL

DFL FLw FLe

psMTL RFL DFLw DFLe FLew

psBL RFLw RFLeDFLew

psMV MTL

BL HA

MV GA

BA2

BA1PA

BA

O

Figure 1: Some subvarieties of FL ordered by inclusion
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Important subvarieties of RL.

• GBL = generalized BL [J, Tsinakis 02]: Residuated lattices

that satisfy x ∧ y = x(x\(x ∧ y)) = ((x ∧ y)/x)x.

• GMV = generalized MV [J, Tsinakis 02] [Galatos 03]:

Residuated lattices such that

x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x.

• Fleas [Hajek 03]: Integral (x ≤ 1) residuated lattices that

satisfy prelinearity (x\y ∨ y\x = 1 and x/y ∨ y/x = 1).

• BH = basic hoops [Agliano Ferreirim Montagna]: Commutative

representable residuated lattices that satisfy divisibility:

x ∧ y = x(x\y).

12



• LG = lattice-ordered groups or `-groups [Birkhoff 67]:

Residuated lattices that satisfy 1 = x(x\1).

• NLG = normal-valued `-groups, defined by

(x ∧ 1)2(y ∧ 1)2 ≤ (y ∧ 1)(x ∧ 1).

• RLG = representable `-groups, defined by

1 ≤ (1\x)yx ∨ 1\y.

• CLG = commutative `-groups.

• V− = negative cones of members of V [J, Tsinakis 02]

E.g. CLG− = negative cones of commutative `-groups, also

defined as cancellative (basic) hoops.
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RL

DRL IRL CRL

GBL RLC DIRL CDRL CIRL

GMV IGBL CGBL IRLC CRLC CDIRL

IGMV CGMV CIGBL CIRLC

LG LG− BH Br

NLG NLG−

RLG RLG− WH

PH

RBr

GBA2

GBA1

CLG CLG− GBA

O

Figure 2: Some subvarieties of RL ordered by inclusion
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Many further varieties can be obtained from these by combining

some of the identities mentioned above.

The prefixes C, D, I, are used to denote the commutative,

distributive and integral identities respectively.

There is a close correspondence between certain subvarieties of FL

and RL.

In logic it is quite usual to have a constant 0 in the language to

denote falsity .

From an algebraic perspective it is in some ways natural to consider

the slightly less expressive signature without 0 since, for example,

the variety of `-groups is not a subvariety of FLw.
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FL RL Defining identities

FLe CRL xy = yx

DFL DRL x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

RFL RLC 1 ≤ u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v

Below add 0 ≤ x for subvarieties of FL

FLw IRL x ≤ 1

FLew CIRL xy = yx, x ≤ 1

psMTL Fleas x\y ∨ y\x = 1 = x/y ∨ y/x
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MTL CIRLC xy = yx, (x → y) ∨ (y → x) = 1

GBL x ∧ y = x(x\(x ∧ y)) = ((x ∧ y)/x)x

psBL IGBL x ∧ y = x(x\y) = (y/x)x

BL BH xy = yx, x ∧ y = x(x → y)

(x → y) ∨ (y → x) = 1

GMV x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x

psMV IGMV x ∨ y = x/(y\x) = (x/y)\x

MV WH xy = yx, x ∨ y = (x → y) → y

HA Br x ∧ y = xy

GA RBr x ∧ y = xy, (x → y) ∨ (y → x) = 1

PA PH BL and ¬¬x ≤ (x → xy) → y(¬¬y)

BA GBA x ∧ y = xy, x ∨ y = (x → y) → y17



The notion of triangular norm has been studied extensively in the

theory of probabilistic measures.

A pseudo-t-norm is an order-preserving monoid operation on the

unit interval [0, 1], with 1 as the identity.

A t-norm is a commutative pseudo-t-norm.

A t-norm is continuous if it is a continuous function from [0, 1]2 to

[0, 1] in the standard topology of the unit interval.

18



FL RL Generated by

MTL CIRLC all residuated t-norms [Jenei Montagna 02]

BL BH all continuous t-norms [Hajek 98] [CEGT00]

MV WH Łukasiewicz xy = max{0, x + y − 1} [Ch59]

GA RBr Gödel xy = min{x, y} [Hajek 98]

PA PH Product xy = multiplication on [0, 1] [Hajek 98]

Table 2: Some varieties generated by t-norms

The subvarieties of RL are obtained if we do not specify 0 as a

constant of the algebra.
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Basic logic was originally defined to formalize the logical properties

of continuous t-norms.

It has turned out to be a remarkably well-behaved logic.

Studies of generalizations of BL aim to understand why this is the

case.

They also allow applications outside of the domain of basic logic.

Continuous t-norms are very special semantic structures.

They mix together many nice properties, and it is not clear how they

all contribute to the nice behavior of BL.
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BL algebras are

• integral : x ≤ 1

• commutative: xy = yx

• prelinear : 1 ≤ (x\y ∨ y\x) ∧ (x/y ∨ y/x)

• representable: subdirectly irreducible members are linear

• divisible: x ≤ y =⇒ ∃c, d(x = cy and x = yd)

A fundamental construction for residuated lattices is the following:
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Let I be a linearly ordered set, and {Ai : i ∈ I} a family of

integral residuated lattices such that 1 is join-irreducible in each Ai,

and
⋂

i∈I Ai = {1}.

The ordinal sum
⊕

i∈I Ai is defined on
⋃

i∈I Ai for x ∈ Ai and

y ∈ Aj by

xy =






x ·Ai y if i = j

x if i < j

y if i > j

This is again an integral residuated lattice, with

x ≤ y iff x ≤Ai y or i < j.

So the Ai’s are stacked up according to the order of I , with the

mutual 1 at the top.
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• BL is closed under this (partial) operation.

The ordinal sum construction provides a straightforward proof

[Agliano Montagna 03] of the following fundamental result of [Hajek

98] and [Cignoli Esteva Godo Torrens 00].

Theorem. BL = Var{continuous t-norms}.
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Generalizations of basic logic are obtained by deleting some of the

axioms of basic logic or relaxing restrictions on the semantics.

In the algebraic setting this corresponds to studying varieties that

include BL.

Conversely, any subvariety of RL or FL defines a corresponding

logic that is sound and complete with respect to the algebraic

semantics of the subvariety.

A formula ϕ corresponds to the identity ϕ ∧ 1 = 1.

An identity s = t corresponds to the formula s\t ∧ t\s.

(identify logical connectives and corresponding operation symbols)

Deductions in equational logic are equivalent to deductions in the

corresponding logic.
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Therefore many logical questions have algebraic counterparts and

vice versa.

In the algebraic setting there are useful semantic concepts and

methods.

E.g. subdirectly irreducible algebras, free algebras, homomorphic

images, subalgebras, products,...
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Further specific properties of BL and BH

Subdirectly irreducibles are linearly ordered.

Meet and join are definable by fusion and its residual.

BL and BH have uncountably many subvarieties.

They have the finite embedding property (every finite partial

subalgebra of a member can be extended to a finite member)

[Agliano Ferreirim Montagna].

Therefore the universal theory of BL and of BH is decidable.

[Montagna Pinna Tiezzi 03] give a Gentzen style decision procedure

(with semantic rules) for the equational theory.

[Agliano Montagna 03] describe all varieties generated by finite

ordinal sums of Wajsberg hoops.
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Congruences in residuated lattices

We now consider the larger variety of residuated lattices.

To understand the structure of an algebra A, it is useful to map it

homomorphically onto a smaller algebra.

This is done internally by examining congruences on A, i.e.

equivalence relations θ on A such that

a1θb1, . . . , anθbn ⇒ f(a1, . . . , an) θ f(b1, . . . , bn).

for all basic operations f of A.

The equivalence class of a ∈ A is denoted by [a]θ .

A/θ is the set of all equivalence classes, and it is the universe of

the quotient algebra A/θ.
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The collection of all congruences of A is written Con(A).

It is a complete (in fact algebraic) lattice with intersection as meet.

In groups, and hence in `-groups, any congruence is determined by

its 1-congruence class, and

there is a one-one correspondence between 1-congruence classes

and normal subgroups.

We want to find a similar characterization for congruences in

residuated lattices.
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Consider the term d(x, y) = x\y ∧ y\x ∧ 1.

Lemma. Let L be a residuated lattice. For any congruence θ of L,

we have

a θ b if and only if d(a, b) θ 1.

Let L− = {x ∈ L : x ≤ 1} denote the negative part of L.

Corollary. Congruences in RL are determined by their

1-congruence classes. In fact, if θ and ϕ are congruences on a

residuated lattice L, then [1]θ ∩ L− = [1]ϕ ∩ L− implies θ = ϕ.

Now we wish to characterize the 1-congruence classes.

A general framework for ideals in universal algebras was given by

[Ursini 72] and elaborated by [Gumm and Ursini 84].
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Definition A term t(u1, . . . , um, x1, . . . , xn) is called an ideal

term of K if K |= t(u1, . . . , um, 1, . . . , 1) = 1.

We also write the term as tu1,...,um
(x1, . . . , xn) to indicate the

distinction between the two types of variables.

Examples of ideal terms for RL are

• the left conjugate λu(x) = (u\xu) ∧ 1 (since 1 ≤ u\u)

• the right conjugate ρu(x) = (ux/u) ∧ 1

• κu(x, y) = (u ∨ x) ∧ y (since u ∨ 1 ≥ 1)

• x � y for � ∈ {∨,∧, ·, \, /} (since 1 � 1 = 1).

A subset H of A ∈ K is closed under an ideal term t of K if for all

a1, . . . , am ∈ A, b1, . . . , bn ∈ H we have

t(a1, . . . , am, b1, . . . , bn) ∈ H .
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Example. Any 1-congruence class is closed under all ideal terms,

since if t is an ideal term and a ∈ Am, b1, . . . , bn ∈ [1]θ then

t(a, b1, . . . , bn) θ t(a, 1, . . . , 1) = 1.

We will see that the 1-congruence classes of a residuated lattice are

characterized as those subalgebras that are closed under the ideal

terms λ, ρ and κ.

In analogy with groups, a subset S of a residuated lattice L is called

normal if it is closed under λ and ρ.

S is called convex if for all x ≤ y ∈ S, the elements u ∈ L that

satisfy x ≤ u ≤ y are also in S.

Note: if S is closed under κ then it is a convex sublattice of L.
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By the example above, every 1-congruence class is a convex

normal subalgebra.

The converse requires some calculations in RL.

Note that · distributes over joins, hence it is order preserving.

\, / are order preserving in the numerator and order reversing in the

denomintor.

Lemma. Let H be a convex normal subalgebra of L, and define

θH = {〈a, b〉 : d(a, b) ∈ H}.

Then θH is a congruence of L and H = [e]θH
.

The collection of all convex normal subalgebras of a residuated

lattice L will be denoted by CN(L).
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CN(L) is easily seen to be an algebraic lattice.

Meets in CN(L) coincide with intersections.

Theorem. [Blount Tsinakis] For any residuated lattice L, CN(L) is

isomorphic to Con(L), via the mutually inverse maps H 7→ θH

and θ 7→ [e]θ .

The Generation of convex normal subalgebras.

Recall that H is a convex normal subalgebra of a residuated lattice

L provided it is closed under the RL-ideal terms κ, λ, ρ and the

basic operations of L.

For a subset S of L, let cn(S) denote the intersection of all convex

normal subalgebras containing S.

When S = {s}, we write cn(s) rather than cn({s}).
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Clearly cn(S) can also be generated from S by iterating the ideal

terms and basic operations.

The next result shows that we may compute cn(S) by applying

these terms in a particular order. Let

∆(S) = {s ∧ 1/s ∧ 1 : s ∈ S}

Γ(S) = {λu1
◦ ρu2

◦ λu3
· · · ρu2n

(s) : n ∈ ω, ui ∈ L, s ∈ S}

Π(S) = {s1 · s2 · · · sn : n ∈ ω, si ∈ S} ∪ {1}.

Thus Γ(S) is the normal closure of S, and

Π(S) is the submonoid generated by S.

Note also that if S ⊆ L− then ∆(S) = S.
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Theorem. [Blount Tsinakis] The convex normal subalgebra

generated by a subset S in a residuated lattice L is

cn(S) = {a ∈ L : x ≤ a ≤ x\e for some x ∈ ΠΓ∆(S)}.

An element a of L is negative if a ≤ 1.

The following corollary describes explicitly how the negative

elements of a one-generated convex normal subalgebra are

obtained.

For u = 〈u1, . . . , u2n〉 let γu = λu1
◦ ρu2

◦ λu3
◦ · · · ◦ ρu2n

.

Corollary. Let L be a residuated lattice and r, s ∈ L−. Then

r ∈ cn(s) if and only if for some m,n there exist ui ∈ L2n

(i = 1, . . . ,m) such that

γu1
(s) · γu2

(s) · · · γum
(s) ≤ r.
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A totally ordered residuated lattice is called a residuated chain.

The variety generated by all residuated chains is denoted by RLC .

The following result provides a finite equational basis for RLC .

A similar basis was obtained independently by [van Alten 01] for the

subvariety of integral members of RLC , and for

pseudo-MTL-algebras by [Kühr 03].

An algebra is subdirectly irreducible if it has a smallest non-trivial

congruence.

[Birkhoff 41] Every algebra is embedded in a product of subdirectly

irreducible homomorphic images, hence a variety is generated by its

subdirectly irreducible members.
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Theorem. [Blount Tsinakis]

RLC is the variety of all residuated lattices that satisfy

1 = λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y).

Proof. The identity holds in any residuated chain, since if x ≤ y,

then 1 ≤ (x ∨ y)\y, so 1 ≤ ρv((x ∨ y)\y) ≤ 1.

Let V be the variety of residuated lattices defined by this identity.

We have just seen that RLC ⊆ V .

To show V ⊆ RLC , it suffices to show that all subdirectly

irreducible members of V are totally ordered.

Let L be a subdirectly irreducible member of V .

We show 1 is join-irreducible and deduce that L is totally ordered.
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Consider a, b ∈ L such that a ∨ b = 1.

We will show that cn(a) ∩ cn(b) = {1}.

Since we assumed L is subdirectly irreducible, it will follow that

either a = 1 or b = 1.

Claim: If x ∨ y = 1 then λu(ρv(x)) ∨ y = 1. Here we make use

of the defining identity for V .

Assuming x ∨ y = 1, we have

λu(x) ∨ y = λu((x ∨ y)\x) ∨ ρ1((x ∨ y)\y) = 1.

Similarly ρv(x) ∨ y = 1. Applying the second result to the first

establishes the claim.
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By the preceding corollary, the negative members of cn(a) are

bounded below by finite products of iterated conjugates of a.

In any residuated lattice, if ai ∨ bj = 1 for all i = 1, . . . ,m,

j = 1, . . . , n then a1a2 · · · am ∨ b1b2 · · · bn = 1.

Therefore a∨ b = 1 implies a′ ∨ b′ = 1 for any a′ ∈ cn(a) ∩L−

and b′ ∈ cn(b) ∩ L−.

Hence cn(a) ∩ cn(b) = {1}.

Now choosing u = v = 1, the identity yields

1 = ((x ∨ y)\x ∧ 1) ∨ ((x ∨ y)\y ∧ 1).

So by join-irreducibility of 1 we have either

1 = ((x ∨ y)\x ∧ 1) or 1 = ((x ∨ y)\y ∧ 1).

The first case implies y ≤ x, and the second implies x ≤ y.
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Translation of positive universal sentences

Given a class K, it is an interesting problem to obtain an explicit

equational basis for Var(K).

If K is defined by positive universal sentences, we can apply the

description of congruences to this problem.

Theorem. [Galatos, J. 02] For any positive universal sentence ϕ

there is a set of identities E(ϕ) such that L |= ϕ iff L |= E(ϕ)

for any subdirectly irreducible L ∈ RL.

We briefly indicate how the identities are constructed.

Any identity s = t is equivalent to 1 ≤ s\t and 1 ≤ t\s.

Any finite conjunction of identities 1 ≤ si (i = 1, . . . , n) is

equivalent to the identity 1 = 1 ∧ s1 ∧ · · · ∧ sn.
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So we may assume that ϕ is a universal disjunction of equations of

the form 1 = ti (i = 1, . . . , n).

Let C0 = {xi : i ∈ ω} be a countable set of variables

Cn+1 = {λxi
(ρxj

(t)) : i, j ∈ ω, t ∈ Cn}

C =
⋃

i∈ω Ci, the set of iterated conjugates.

Let E(ϕ) = {e = γ1(t1) ∨ · · · ∨ γn(tn) : γ1, . . . , γn ∈ C}.

For the commutative case, the set E(ϕ) can be replaced by the

single equation 1 = t1 ∨ . . . ∨ tn.

The preceding result can be used to find a finite basis for the join of

any two finitely based subvarieties of CRL (or FLe or BL).

So for example it is straight forward to find equational bases for joins

of MV, GA and PA.
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Discriminator varieties

[Baaz 96] introduced the projection ∆(x) =





1 if x = 1

0 if x 6= 1
as

an additional operation in BL-algebras (it is not definable).

∆ maps fuzzy logic back into classical logic in a very strict way:

anything that is not absolutely true is completely false.

In the logical setting ∆ has the meaning of “very true”.

He then proved many nice consequences for BL∆.

To see the reason for this, we relate ∆ to another another concept

from Universal Algebra.
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An algebra A is a discriminator algebra if there is a 3-ary term that

satisfies

t(x, y, z) =





x if x 6= y

z if x = y

Disciminator algebras were first studied by Foster in the 1950s.

[McKenzie 75] found a simple equational basis for the variety

generated by the class of all algebras in which a fixed term t acts as

the discriminator.

McKenzie also proved that if the algebras have two constants

0 6= 1, then any universal sentence ϕ can be translated to a term

ϕ∗ such that ϕ is equivalent to ϕ∗ = 1 in all discriminator algebras.

This allows results from logic to be translated to equational logic.
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Theorem. A BL-algebra has the projection ∆ iff it has a

discriminator term t.

Define x ↔ y = (x → y) ∧ (y → x) as in Boolean algebras.

Then x ↔ y = 1 iff x = y.

Now let t(x, y, z) = z∆(x ↔ y) ∨ x (¬∆(x ↔ y)).

Conversely, given t, define ∆(x) = ¬t(1, x, 0).

In fact this can be immediately generalized to bounded residuated

lattices (without commutativity or integrality or other BL axioms).
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Let ∆(x) =





1 if x ≥ 1

0 otherwise

and define x ↔ y = x\y ∧ y\x, and ¬x = x\0.

Again, x ↔ y ≥ 1 iff x = y, and ¬0 = T (top), ¬1 = 0.

Now let t(x, y, z) = z∆(x ↔ y) ∨ x (¬∆(x ↔ y) ∧ 1).

Conversely, given t, define ∆(x) = ¬t(1, x ∧ 1, 0) ∧ 1.

Theorem. A variety of bounded commutative residuated lattices is

a discriminator variety iff ∆ is a term function in all simple members

iff ∆(x) = (x ∧ 1)n for some fixed n in all simple members.
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Decomposition of generalized BL-algebras

The results in this section are due to [Galatos 03]. They clarify the

connection between GBL, and its subvarieties of integral

GBL-algebras and lattice-ordered groups.

Recall that · is right-complemented if x ≤ y implies ∃c(x = yc)

or equivalently, with residuals, if x ≤ y implies x = y(y\x).

In any residuated lattice this becomes x ∧ y = y(y\(x ∧ y)).

Assuming integrality, it reduces to right-divisibility x ∧ y = y(y\x).

But what if we don’t assume integrality? We still get distributivity, but

not prelinearity since `-groups are complemented (= right- and

left-complemented).

GBL is the variety of ·-complemented residuated lattices.
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For a residuated lattice L, define

invertible elements = G(L) = {x ∈ L : x(x\1) = 1 = (1/x)x}

integral elements = I(L) = {x ∈ L : x\1 = 1 = 1/x}.

Theorem. For any GBL-algebra L, G(L) and I(L) are

subalgebras, with G(L) ∈ LG, I(L) ∈ IGBL, and the map

f : G(L) × I(L) → L given by f(x, y) = xy is an

isomorphism.

Corollary. Any finite GBL-algebra is integral.

For classes of algebras K1, K2 define

K1 ×K2 = {A × B : A ∈ K1, B ∈ K2}.
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Corollary. GBL = LG ∨ IGBL = LG × IGBL and

GMV = LG ∨ IGMV = LG × IGMV

Here GMV is defined as all residuated lattices that are division

complemented : x ≤ y implies ∃c, d(y = x/c and y = d\x)

or by identities x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x.

[Galatos 03] also shows that IGMV satisfies prelinearity:

1 ≤ (x\y ∨ y\x) ∧ (x/y ∨ y/x).

Combined with the decomposition result one obtains the following.

Corollary. The subdirectly irreducible members of CGMV are

linearly ordered, hence CGMV is a subvariety of RLC .
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Categorical equivalence of `-groups with their negative cones

We now consider the categorical equivalence between lattice

ordered groups and cancellative integral generalized BL-algebras

[J, Tsinakis 02] [BCGJT] [van Alten], as a special case of the very

general Morita equivalence in universal algebra [McKenzie 96].

Negative Cones of `-Groups. Recall that the negative part of a

residuated lattice L is L− = {x ∈ L : x ≤ 1}.

The negative cone of L is defined as 〈L−,∨,∧, ·, e, /L−

, \L−

〉,

where a/L−

b = a/b ∧ e and a\L−

b = a\b ∧ e.

It is easy to check that L− is again a residuated lattice.

For a class K of residuated lattices, K− denotes the class of

negative cones of members of K.
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Using a standard construction to embed certain cancellative

monoids in their groups of fractions one can prove the following.

Theorem. [Bahls Cole Galatos J, Tsinakis 03] LG− is a variety,

defined by the identities xy/y = x = y\yx and

(x/y)y = x ∧ y = y(y\x). Alternatively, the last two identities

can be replaced by x/(y\x) = x ∨ y = (x/y)\x.

Corollary. The variety CLG− = Var(Z−) is defined by the

identities xy = yx, x = y\yx and x ∧ y = y(y\x).

Alternatively, the last identity can be replaced by x∨ y = (y\x)\x.

The Subvarieties of LG and LG−. We now extend the map
− : LG → LG− to subclasses of LG, and in particular to the lattice

of subvarieties L(LG).
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We show that the image of a variety is always a variety, that every

subvariety of LG− is obtained in this way and that the map is order

preserving.

The proof is syntactical and shows how equational bases can be

translated back and forth.

Independently, [van Alten 01] also discovered a basis for LG−, by

proving that it is term-equivalent to the variety of cancellative

generalized hoops.

From Subvarieties of LG− to Subvarieties of LG. In this

direction, the translation is derived essentially from the definition of

the negative cone.
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For a residuated lattice term t, we define a translated term t− by

x− = x ∧ 1 (st)− = s−t− 1− = 1

(s/t)− = s−/t− ∧ 1 (s ∨ t)− = s− ∨ t−

(s\t)− = s−\t− ∧ 1 (s ∧ t)− = s− ∧ t−.

Theorem. Let V be a subvariety of LG−, defined by a set E of

identities and let W be the subvariety of LG defined by the set of

identities E− = {s− = t− : (s = t) ∈ E}. Then W− = V .

As an example, consider the variety NLG− that is defined by the

identity x2y2 ≤ yx relative to LG−.

The corresponding identity for the variety NLG of normal valued

`-groups is (x ∧ 1)2(y ∧ 1)2 ≤ (y ∧ 1)(x ∧ 1).
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From Subvarieties of LG to Subvarieties of LG−.

Since · and −1 distribute over ∨ and ∧, any LG identity is

equivalent to a conjunction of two identities of the form

1 ≤ p(g1, . . . , gn), where p is a lattice term and g1, . . . , gn are

group terms.

Since `-groups are distributive, this can be further reduced to a

finite conjunction of inequalities of the form 1 ≤ g1 ∨ · · · ∨ gn.

For a term t(x1, . . . , xm) and a variable z distinct from

x1, . . . , xm, let

t(z, x1, . . . , xm) = t(z−1x1, . . . , z
−1xm).

Lemma. Let L ∈ LG. From any group term g one can (effectively)

construct a RL term ĝ such that (g ∧ e)L|L− = ĝL−

.
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Theorem. Let V be a subvariety of LG, defined by a set E of

identities, which we may assume are of the form

1 ≤ g1 ∨ . . . ∨ gn. Let

E = {1 = ĝ1 ∨ . . . ∨ ĝn : 1 ≤ g1 ∨ . . . ∨ gn is in E}.

Then E is an equational basis for V− relative to LG−.

For example consider the variety RLG of representable `-groups

which (by definition) is generated by the class of linearly ordered

groups.

An equational basis for this variety is given by 1 ≤ x−1yx ∨ y−1

(relative to LG).

Applying the translation above, we obtain 1 = zx\(zy/z)x ∨ y\z

as an equational basis for RLG−.
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Corollary. The map V 7→ V− from L(LG) to L(LG−) is a lattice

isomorphism, with the property that finitely based subvarieties of LG

are mapped to finitely based subvarieties of LG− and conversely.

Categorical equivalence and the functor L 7→ L−

The connection between LG and LG− is actually a special case of

a categorical equivalence.

In the algebraic setting such equivalences were characterized by

[McKenzie 96].

This is a generalization of Morita’s celebrated theorem, which gives

concrete conditions on two rings with unit that characterize when

the varieties of left unitary modules over these rings are

categorically equivalent.
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Let A be an algebra, and let T be the set of all terms in the

language of A.

Given a unary term σ we define a new algebra called the σ-image

of A by

A(σ) = 〈σ(A), {tσ : t ∈ T}〉

where t
A(σ)
σ (x1, . . . , xn) = σA(tA(x1, . . . , xn)).

The second construction is the matrix power of A.

Let Tk be the set of k-ary terms. For a positive integer n we define

A[n] = 〈An, {mt : t ∈ (Tkn)n for some k > 0}〉,

where mt : (An)k → An is given by

mt(x̄1, . . . , x̄k)i = tAi (x11, . . . , x1n, . . . , xk1, . . . , xkn).
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For a class K of algebras we let K(σ) and K[n] be the classes of

σ-images and n-th matrix powers respectively.

A term σ is idempotent in K if K |= σ(σ(x)) = σ(x).

It is invertible in K if there exist unary terms t1, . . . , tn and an

n-ary term t (for some n > 0) such that

K |= x = t(σ(t1(x)), . . . , σ(tn(x))).

A central result of [McKenzie 96] is the following.

Theorem. Two varieties V and W are categorically equivalent if

and only if there is an n > 0 and an invertible idempotent term σ

for V [n] such that W is term-equivalent to V [n](σ).

In the setting of `-groups and their negative cones, we can see an

instance of this result.
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The term σ(x) = x ∧ 1 is certainly idempotent.

It is invertible (with n = 2) since x = (x ∧ 1)(x−1 ∧ 1)−1 holds

in all `-groups.

Of course L(σ) is not of the same type as L−, but they are term

equivalent.

In the other direction, every member of LG− can be mapped to a

τ -image of a matrix square that is term-equivalent to an `-group.

In general, the term τ is given by

τ(x̄) = 〈σt1t(x̄), . . . , σtnt(x̄)〉.

This reduces to τ(〈x, y〉) = 〈x/y, y/x〉 for negative cones.
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Categorical equivalence of GMV and `-group expansions

[Chang 59] showed that every subdirectly irreducible MV-algebra

can be obtained from an interval in an abelian `-group.

[Mundici 86] generalized this result to a categorical equivalence

between the category of MV-algebras and the category of abelian

`-groups with a strong unit.

u ∈ G, an `-group, is a strong unit if G =
⋃

1≤n[u−n, un].

[Dvurečenskij 02] removed commutativity and extended this

equivalence to the larger catgories of pseudo MV-algebras and

`-groups with strong unit.
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Recently [Galatos 03] extended it further to generalized

MV-algebras (removing integrality and the existence of a least

element) by replacing the strong unit by a nucleus-kernel

composition.

A closure operator on a residuated lattice L is an order-preserving

map γ : L → L such that x ≤ γ(x) = γ(γ(x)).

A interior operator on L is the dual concept, i.e. an order-preserving

map δ : L → L such that x ≥ δ(x) = δ(δ(x)).

A nucleus is a closure operator such that γ(x)γ(y) ≤ γ(xy).

A kernel is an interior operator such that

δ(δ(x)δ(y)) = δ(x)δ(y), δ(1) = 1 and

δ(x) ∧ y = δ(δ(x) ∧ y).
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Let LG∗ be the category with objects 〈G,β〉, where G is an

`-group and β(x) = γ(δ(x)) for some nucleus γ and some kernel

δ on G and β[G] = G. The morphisms are the homomorphisms

for the expanded `-groups.

Theorem. [Galatos 03] The categories LG∗ and GMV are

equivalent.

Given a term t, and a variable z that does not appear in t, let tz be

the term obtained by replacing every variable v in t by v ∨ z.

Theorem. [Galatos 03] An identity s = t holds in IGMV iff the

identity sz = tz holds in LG−.
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Combining this result with the earlier decomposition result for GMV

Galatos obtains the following result.

Corollary. An identity s = t holds in GMV iff s = t holds in LG

and sz = tz holds in LG−.

[Holland and McCleary 79] showed that LG is decidable, and this

transfers to LG− by the categorical equivalence discussed earlier.

Corollary. The equational theories of IGMV and GMV are

decidable.

The decision procedure for `-groups has recently been implemented

on the web at www.chapman.edu/∼jipsen/ and has been

modified to also handle the varieties IGMV and GMV.
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RL

DRL IRL CRL

GBL RLC DIRL CDRL CIRL

GMV IGBL CGBL IRLC CRLC CDIRL

IGMV CGMV CIGBL CIRLC

LG LG− BH Br

NLG NLG−

RLG RLG− WH

PH

RBr

GBA2

GBA1

CLG CLG− GBA

O

Figure 3: Some subvarieties of RL ordered by inclusion
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Size n = 3 4 5 6

FL RL 3 20 149 1488

DFL DRL 3 20 115 899

FLe CRL 3 16 100 794

FLw IRL 3 9 49 364

psMTLSI FleasSI 2 8 44 308

MTLSI CIRLC
SI 2 6 22 94

GBLSI 2 4 8 16

GMVSI 1 1 1 1

*
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1996, Brno, Springer, Berlin (1996), 23–33.

[BCGJT] P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis, Cancellative residuated lattices,

Algebra Universalis, to appear.

[BD74] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia,

Mo., 1974.

[BJO] F. Belardinelli, P. Jipsen and H. Ono, Algebraic aspects of cut elimination, preprint.

[Bi67] G. Birkhoff, Lattice Theory, (3rd ed), Colloquium Publications 25, Amer. Math. Soc.,

1967.

[BP82] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable

principal congruences I, Algebra Universalis 15, 195–227.

[BvA02] W. J. Blok and C. J. van Alten, The finite embeddability property for residuated lattices,

65



pocrims and BCK-algebras, Algebra Universalis 48, (2002), 253–271.

[BvA] W. J. Blok and C. J. van Alten, The finite embeddability property for partially ordered

biresiduated integral groupoids, preprint.

[BT] K. Blount and C. Tsinakis, The structure of residuated lattices, Intl. Journal of Algebra

and Computation, to appear.

[BS81] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag,

1981, online at http://www.thoralf.uwaterloo.ca/

[Ch59] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer.

Math. Soc. 93 1959 74–80.

[CDM00] R. Cignoli, I. D’Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning,

Trends in Logic—Studia Logica Library, 7. Kluwer Academic Publishers, Dordrecht,

2000.

[CEGT00] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of

continuous t-norms and their residua, Soft Computing 4, (2000), 106–112.

[Ci01] P. Cintula, About axiomatic systems of product fuzzy logic, Soft Computing 5, (2001),

no. 3, 243–244.

[DGI02] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Mult. Val. Log. 8

66



(2002), no. 5-6, 673–714.

[Di39] R. P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc. 46,

(1939), 426–444.
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