Basic Logic algebras and lattice-ordered groups as algebras of binary relations

Peter Jipsen
Chapman University, California

- Algebras of binary relations

- Embedding ℓ-groups
- Embedding BL-algebras
- Finite representable generalized BL-algebras

Algebras of binary relations

Let us recall some standard results:
M. Stone: Every Boolean algebra is isomorphic to a subalgebra of all subsets of some set U, with $\cup, \cap,-, \emptyset, U$ as operations.
C. Holland: Every ℓ-group is isomorphic to a subalgebra of all orderautomorphisms of a chain, with pointwise order and $\circ,^{-1}, i d$ as operations.
Let R, S be binary relations ($\subseteq U^{2}$)
relation composition:

$$
R \circ S=\{(u, v): \exists w(u, w) \in R \text { and }(w, v) \in S\}
$$

inverse: $R^{-1}=\{(v, u):(u, v) \in R\}$ and
identity: $i d_{U}=\{(u, u): u \in U\}$
A representable relation algebra on U is a set A of relations that is closed under $\cup, \cap,-, \circ,^{-1}, i d_{U}$.
RRA $=$ class of all algebras isomorphic to representable relation algebras

Tarski: RRA is a variety.
Monk '64: RRA is not finitely axiomatizable.

- is like a multiplication
\circ, \cap distribute over \cup as in ℓ-groups
Naive question: Can we embed ℓ-groups into representable relation algebras?

Well, we don't need complementation.
If $R \circ R^{-1}=i d_{U}=R^{-1} \circ R$ then R is a permutation.

So any ℓ-group element would have to map to a permutation.
But this is incompatible with preserving the order of the ℓ-group since distinct permutation are disjoint as relations.
Also, if $R, S \subseteq i d_{U}$ then $R \circ S=R \cap S$.
But this is certainly no true in ℓ-groups.
So forget about ${ }^{-1}, i d_{U}$ and instead look at the "residuated lattice reducts" of relation algebras.
residuals: $R \backslash S=\{(u, v): R \circ\{(u, v)\} \subseteq S\}$ and $R / S=\{(u, v):\{(u, v)\} \circ S \subseteq R\}$
Definition: A residuated lattice of (binary) relations is a set A of relations that is closed under $\cup, \cap, \circ, \backslash, /$ and contains a relation 1 such that $1 \circ R=R \circ 1=R$ for all $R \in A$.
(Note that 1 is usually not the identity relation.)
RLR denotes the quasivariety of all residuated lattices of relations.
Problem 1. Is RLR a variety?
It is obvious that every residuated lattice of relations is a distributive residuated lattice.

Problem 2. Is the converse also true?
Andreka [1991] proved a general result that implies RLR is not finitely axiomatizable.
Since distributive residuated lattices form a finitely axiomatizable variety, the answer to Problem 2 would be no if RLR is a variety.

Embedding ℓ-groups

LG denotes the variety of lattice-ordered groups (residuated lattices that satisfy $x(x \backslash 1)=1$, so $\left.x^{-1}=x \backslash 1\right)$.
They are distributive residuated lattices.
Question: Is LG \subseteq RLR?
This is answered by the following result.
Theorem. Every ℓ-group is isomorphic to a residuated lattice of relations, hence $\mathrm{LG} \subseteq \mathrm{RLR}$.

Proof. Let $G=\left\langle\operatorname{Aut}(\Omega), \vee, \wedge, \circ, i d_{\Omega}, \backslash, /\right\rangle$ be the ℓ-group of orderautomorphisms of a chain Ω.

Note that \vee, \wedge are calculated pointwise.
By Holland's embedding theorem, it suffices to embed G into a residuated lattice of relations on Ω.
For $g \in G$, let $R_{g}=\{(u, v): u \leq g(v)\}$.
$R_{g} \cap R_{h}=R_{g \wedge h}$ since
$(u, v) \in R_{g} \cap R_{h}$
$\Longleftrightarrow \quad u \leq g(v)$ and $u \leq h(v)$
$\Longleftrightarrow \quad u \leq \min \{g(v), h(v)\}=(g \wedge h)(v)$
$\Longleftrightarrow \quad(u, v) \in R_{g \wedge h}$
$R_{g} \cup R_{h}=R_{g \vee h}$ is similar, using max.
$R_{g} \circ R_{h}=R_{g \circ h}$ since

$$
(u, v) \in R_{g} \circ R_{h}
$$

$\Longleftrightarrow \quad \exists w\left[(u, w) \in R_{g}\right.$ and $\left.(w, v) \in R_{h}\right]$
$\Longleftrightarrow \quad \exists w[u \leq g(w)$ and $w \leq h(v)]$
$\Longleftrightarrow \quad u \leq g(h(v)) \quad(w=h(v)$ for $\Longleftarrow)$
$\Longleftrightarrow \quad(u, v) \in R_{g \circ h}$
$R_{g} \backslash R_{h}=R_{g \backslash h}$ since
$(u, v) \in R_{g} \backslash R_{h}$
$\Longleftrightarrow \quad R_{g} \circ\{(u, v)\} \subseteq R_{h}$
$\Longleftrightarrow \quad \forall w\left[(w, u) \in R_{g} \Longrightarrow(w, v) \in R_{h}\right]$
$\Longleftrightarrow \quad \forall w[w \leq g(u) \Longrightarrow w \leq h(v)]$
$\Longleftrightarrow \quad g(u) \leq h(v)$
$\Longleftrightarrow \quad u \leq g^{-1}(h(v))=(g \backslash h)(v)$
$\Longleftrightarrow \quad(u, v) \in R_{g \backslash h}$
$R_{g} / R_{h}=R_{g / h}$ since $(u, v) \in R_{g} / R_{h}$
$\Longleftrightarrow \quad\{(u, v)\} \circ R_{h} \subseteq R_{g}$
$\Longleftrightarrow \quad \forall w\left[(v, w) \in R_{h} \Longrightarrow(u, w) \in R_{g}\right]$
$\Longleftrightarrow \quad \forall w[v \leq h(w) \Longrightarrow u \leq g(w)]$
$\Longleftrightarrow \quad \forall w\left[h^{-1}(v) \leq w \Longrightarrow g^{-1}(u) \leq w\right]$
$\Longleftrightarrow \quad g^{-1}(u) \leq h^{-1}(v)$ for $\left.\Longrightarrow\right)$

4
$\Longleftrightarrow \quad u \leq g\left(h^{-1}(v)\right)=(g / h)(v)$
$\Longleftrightarrow \quad(u, v) \in R_{g / h}$
Finally, $R_{i d}=\{(u, v): u \leq v\}=$ " \leq " is an identity element since
$R_{g} \circ R_{i d}=R_{g \circ i d}=R_{g}=R_{i d} \circ R_{g}$.
Therefore $\left\{R_{g}: g \in G\right\}$ is a residuated lattice of relations that is isomorphic to G.

Embedding BL-algebras

Theorem. Every BL-algebra is isomorphic to some algebra of relations
Proof. The MV-algebra on $[0,1]$ is isomorphic to $\left\{M_{r}: r \in[0,1]\right\}$ where $M_{r}=\left\{(u, v) \in(0,1]^{2}: v \leq u-1+r\right\}$.
The Gödel algebra on $[0,1]$ is isomorphic to $\left\{G_{r}: r \in[0,1]\right\}$ where $G_{r}=\left\{(u, v) \in(0,1]^{2}: v \leq \min \{u, r\}\right\}$.
The product algebra on $[0,1]$ is isomorphic to $\left\{P_{r}: r \in[0,1]\right\}$ where $P_{r}=\left\{(u, v) \in(0,1]^{2}: v \leq r \cdot u\right\}$.
To complete the proof it suffices to show that RLR is closed under ordinal sums of integral members.
Suppose $A, B \in \operatorname{RLR}$, with A integral, $A \subseteq \mathcal{P}\left(U^{2}\right)$ and $B \subseteq \mathcal{P}\left(V^{2}\right)$, where U and V are disjoint.
Define $C=A \cup\left\{R \cup 1^{A}: R \in B\right.$. Then it is easy to check that $C \cong A \oplus B$.
Note that integrality of A is required to ensure that $1^{A} \cup 1^{B}$ is an identity of C.

Finite representable generalized BL-algebras

Generalized basic logic algebras, or GBL-algebras for short, are residuated lattices that satisfy
$x \wedge y=((x \wedge y) / y) y \quad$ and $\quad x \wedge y=y(y \backslash(x \wedge y))$.
The variety of GBL-algebras contains LG, as well as the variety of basic hoops (defined by adding $x y=y x$ and $x \wedge y=(x / y) y)$ to RL).
A residuated lattice is integral if the identity 1 is the top element.
This condition holds for basic hoops since $x \wedge 1=(x / 1) 1=x$.
A GBL-algebra is called a GBL-chain if it is linearly ordered.
GBL-chains generate the variety of representable GBL-algebras.

Pseudo BL-algebras are bounded integral GBL-algebras expanded with a constant 0 denoting the least element, and that satisfy prelinearity: $x \backslash y \vee y \backslash x=1=x / y \vee y / x$.
BL-algebras are commutative pseudo BL-algebras (in which case prelinearity can be derived from the basic hoop axioms).
Hajek [1998] proved that all subdirectly irreducible BL-algebras are BL-chains.
Also, by definition, BL-algebras are commutative and integral.
The lattice-reduct of any GBL-algebra is distributive (see e.g. J. and Tsinakis [2002])
But in general, GBL-algebras are neither integral nor commutative nor representable, (consider any nonrepresentable ℓ-group).
Note that if a GBL-algebra has a top element \top, then $\top=1$:
From $x \wedge y=y(y \backslash(x \wedge y))$, we deduce

$$
1=1 \wedge T=T(T \backslash(1 \wedge T))=T(T \backslash 1)
$$

hence $T=T 1=T T(T \backslash 1)=T(T \backslash 1)=1$.
(More generally this shows 1 is a maximal idempotent in any GBLalgebra.)
Therefore any finite GBL-algebra is integral.
We now prove that all finite GBL-chains are in fact commutative and hence basic hoops.
This result also holds for pseudo BL-chains (since any finite GBL-chain can be expanded to a pseudo BL-chain by adding a constant 0 to denote the least element)

Problem 3. Are all finite GBL-algebras commutative?
The GBL identities are equivalent to the following property that is also called divisibility:
$x \leq y \Longrightarrow(\exists z(x=z y)$ and $\exists z(x=y z))$.
As usual, the symbol \prec denotes the covering relation, and \preceq denotes the covering-or-equal relation.
As usual, the symbol \prec denotes the covering relation, and \preceq denotes the covering-or-equal relation.

Lemma 1. In any integral GBL-chain, if $a \prec b$ then for all c we have $a c \preceq b c$ and $c a \preceq c b$.

Proof. We show the contrapositive. Suppose a, b, c, x are elements in an integral GBL-chain such that $a c<x<b c$.
By integrality $x \leq c$, hence by divisibility $\exists z$ such that $x=z c$.
Now $z c<b c \Longrightarrow b \not \leq z$, so the linear order implies $z<b$.
Similarly, $a c<z c$ implies $a<z$.
Hence a is not covered by b.
The argument for $c a<x<c b$ is similar.
Let L and M be integral residuated lattices with no elements in common.
Suppose further that the identity element of L is join-irreducible.
The ordinal sum of L and M is an integral residuated lattice defined on the set $(L \backslash\{1\}) \cup M$ as follows:

- restricted to L and M agrees with the original product on L and M respectively, and for $x \in L \backslash\{e\}$ and $y \in M$,

$$
x \cdot y=x=y \cdot x .
$$

The order on the ordinal sum also agrees with the original order on L and M, and all elements of $L \backslash\{e\}$ are below all elements of M.
Let a be an idempotent element $(a a=a)$ of an integral residuated lattice L.
Then it is easy to check that $\uparrow a=\{x \in L: x \leq a\}$ is a subalgebra of L.

Similarly, $\downarrow a=\{x \in L: x \leq a\}$ is closed under • and the lattice operations, and

- is residuated by the operations

$$
x \backslash^{\downarrow} y=x \backslash y \wedge a \quad \text { and } \quad x / \downarrow y=x / y \wedge a .
$$

The next result shows that for finite GBL-chains a acts as the identity element on $\downarrow a$.

Lemma 2. If a finite GBL-chain L contains an idempotent $a \neq 0,1$ then $\downarrow a$ is a residuated lattice with identity $1^{\downarrow}=a$, and L decomposes as the ordinal sum of $\uparrow a$ and \downarrow a.

Proof. To conclude that $\downarrow a$ is a residuated lattice, it suffices to show that $a x=x=x a$ for all $x \leq a$.
This follows from the preceding lemma since L is a finite chain,
$a a=a, a 0=0$, and the map $x \mapsto a x$ preserves \preceq.
To see that L decomposes as an ordinal sum,
note that if $x \leq a$ and $y \geq a$ then $y x=x$,
since $1 x=x, a x=x$, and \cdot is order preserving.
Similarly $x y=x$.
Since ordinal sums of commutative integral GBL-algebras are commutative, it now only remains to show that every finite integral GBLalgebras without idempotents (other than 0 and 1) is commutative.

Lemma. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be the elements of a finite GBLalgebra, with $a_{0}=1, a_{n}=0$ and $a_{i} \succ a_{i+1}$ for $i<n$.
Suppose that A has no idempotents other than 1, 0, and that for some fixed $m \leq n$ and all $i+j<m$ we have $a_{i} \cdot a_{j}=a_{i+j}$.
Then $a_{m-k} \cdot a_{k}=a_{m}$ for all $k \leq m$.
Lemma 3. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be the elements of a finite $G B L$ algebra, with $a_{0}=1, a_{n}=0$ and $a_{i} \succ a_{i+1}$ for $i<n$.
Suppose that A has no idempotents other than 1, 0 , and that for some fixed $m \leq n$ and all $i+j<m$ we have $a_{i} \cdot a_{j}=a_{i+j}$.
Then $a_{m-k} \cdot a_{k}=a_{m}$ for all $k \leq m$.
Proof. Assume the stated conditions hold, and let $k \leq m$.
If $k=0$, then the conclusion follows immediately.
For $k=1$, Lemma 1 implies that $a_{m-1} \cdot a_{1}$ is either a_{m-1} or a_{m},
since $a_{m-1} \cdot a_{0}=a_{m-1}$.
We claim that the first case is impossible since it implies that a_{m-1} is idempotent.
This follows from the observation that if $a_{m-1} \cdot a_{1}=a_{m-1}$ then a_{m-1}. $a_{1} \cdot a_{1} \cdots a_{1}=a_{m-1}$, and
the product of $m-1$ copies of a_{1} is a_{m-1} by assumption.
Therefore $a_{m-1} \cdot a_{1}=a_{m}$. (End of basis step)
Now suppose that $a_{m-(k-1)} \cdot a_{k-1}=a_{m}$.

Then $a_{m-k} \cdot a_{k}=a_{m-k} \cdot a_{1} \cdot a_{k-1}=a_{m-k+1} \cdot a_{k-1}=a_{m}$.
So the desired result follows by induction on k.
The n-element Wajsberg chain is a basic hoop with elements $a_{0} \succ a_{1} \succ$ $\cdots \succ a_{n-1}$ such that $a_{i} \cdot a_{j}=a_{\min (i+j, n-1)}$, hence commutative.
Theorem. Every finite GBL-chain is commutative (hence a basic hoop).
Proof. Suppose A is a GBL-chain that has elements $a_{0} \succ a_{1} \succ \cdots \succ$ $a_{n}=0$.
Any finite GBL-algebra is integral, hence $a_{0}=1$.
If $n=1$, then A is the 2 -element Wajsberg chain ($=\mathrm{BA}$).
Now suppose $n>1$. If a_{i} is idempotent for some $0<i<n$,
then A decomposes by Lemma 2 into the ordinal sum of two smaller GBL-chains.
So we may assume that A has no idempotents other that 1,0 .
Therefore by Lemma $1, a_{1} \cdot a_{1}=a_{2}$.
If $n=2$, then A is the 3 -element Wajsberg chain, and
if $n>2$, then the assumptions of Lemma 3 are satisfied with $m=3$.
Using this lemma as the inductive step we see that
A has the structure of the $n+1$-element Wajsberg chain.
So the finite GBL-chains are just ordinal sums of Wajsberg chains.
This makes it easy to count the number nonisomorphic (G)BL-chains with n elements.
We just have to choose which of the $n-2$ elements between 1 and 0 are idempotents.
For each of the 2^{n-2} different choices we obtain a nonisomorphic (G)BLchain.
Corollary. For $n>1$ there are 2^{n-2} GBL-chains with n elements.
Since there are noncommutative representable integral GBL-algebras, we also have the following result.
Corollary. The variety of representable GBL-algebras and the variety of integral representable GBL-algebras are not generated by their finite members (i.e. they do not have the finite model property).

References

[1] N. Galatos and C. Tsinakis, Generalized MV-algebras, to appear in Journal of Algebra.
[2] P. HÁJEK, Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic, Kluwer Academic Publishers, 1998.
[3] P. Jipsen and C. Tsinakis, A Survey of Residuated Lattices, in "Ordered Algebraic Structures" (J. Martinez, editor), Kluwer Academic Publishers, Dordrecht, 2002, 19-56.

