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Algebras of binary relations

Let us recall some standard results:

M. Stone: Every Boolean algebra is isomorphic to a subalgebra of all
subsets of some set U , with ∪,∩,−, ∅, U as operations.

C. Holland: Every `-group is isomorphic to a subalgebra of all order-
automorphisms of a chain, with pointwise order and ◦,−1 , id as opera-
tions.

Let R, S be binary relations (⊆ U2)

relation composition:
R ◦ S = {(u, v) : ∃w (u, w) ∈ R and (w, v) ∈ S}

inverse: R−1 = {(v, u) : (u, v) ∈ R} and

identity: idU = {(u, u) : u ∈ U}
A representable relation algebra on U is a set A of relations that is
closed under ∪,∩,−, ◦,−1 , idU .

RRA = class of all algebras isomorphic to representable relation alge-
bras

Tarski: RRA is a variety.

Monk ’64: RRA is not finitely axiomatizable.

◦ is like a multiplication

◦,∩ distribute over ∪ as in `-groups

Naive question: Can we embed `-groups into representable relation
algebras?

Well, we don’t need complementation.

If R ◦R−1 = idU = R−1 ◦R then R is a permutation.
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So any `-group element would have to map to a permutation.

But this is incompatible with preserving the order of the `-group since
distinct permutation are disjoint as relations.

Also, if R,S ⊆ idU then R ◦ S = R ∩ S.

But this is certainly no true in `-groups.

So forget about −1, idU and instead look at the “residuated lattice
reducts” of relation algebras.

residuals: R\S = {(u, v) : R ◦ {(u, v)} ⊆ S} and
R/S = {(u, v) : {(u, v)} ◦ S ⊆ R}

Definition: A residuated lattice of (binary) relations is a set A of
relations that is closed under ∪,∩, ◦, \, / and contains a relation 1 such
that 1 ◦R = R ◦ 1 = R for all R ∈ A.

(Note that 1 is usually not the identity relation.)

RLR denotes the quasivariety of all residuated lattices of relations.

Problem 1. Is RLR a variety?

It is obvious that every residuated lattice of relations is a distributive
residuated lattice.

Problem 2. Is the converse also true?

Andreka [1991] proved a general result that implies RLR is not finitely
axiomatizable.

Since distributive residuated lattices form a finitely axiomatizable va-
riety, the answer to Problem 2 would be no if RLR is a variety.

Embedding `-groups

LG denotes the variety of lattice-ordered groups (residuated lattices that
satisfy x(x\1) = 1, so x−1 = x\1).

They are distributive residuated lattices.

Question: Is LG ⊆ RLR?

This is answered by the following result.

Theorem. Every `-group is isomorphic to a residuated lattice of rela-
tions, hence LG ⊆ RLR.

Proof. Let G = 〈Aut(Ω),∨,∧, ◦, idΩ, \, /〉 be the `-group of order-
automorphisms of a chain Ω.
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Note that ∨,∧ are calculated pointwise.

By Holland’s embedding theorem, it suffices to embed G into a resid-
uated lattice of relations on Ω.

For g ∈ G, let Rg = {(u, v) : u ≤ g(v)}.
Rg ∩Rh = Rg∧h since

(u, v) ∈ Rg ∩Rh

⇐⇒ u ≤ g(v) and u ≤ h(v)

⇐⇒ u ≤ min{g(v), h(v)} = (g ∧ h)(v)

⇐⇒ (u, v) ∈ Rg∧h

Rg ∪Rh = Rg∨h is similar, using max.

Rg ◦Rh = Rg◦h since

(u, v) ∈ Rg ◦Rh

⇐⇒ ∃w [(u, w) ∈ Rg and (w, v) ∈ Rh]

⇐⇒ ∃w [u ≤ g(w) and w ≤ h(v)]

⇐⇒ u ≤ g(h(v)) (w = h(v) for ⇐=)

⇐⇒ (u, v) ∈ Rg◦h

Rg\Rh = Rg\h since

(u, v) ∈ Rg\Rh

⇐⇒ Rg ◦ {(u, v)} ⊆ Rh

⇐⇒ ∀w [(w, u) ∈ Rg =⇒ (w, v) ∈ Rh]

⇐⇒ ∀w [w ≤ g(u) =⇒ w ≤ h(v)]

⇐⇒ g(u) ≤ h(v)

⇐⇒ u ≤ g−1(h(v)) = (g\h)(v)

⇐⇒ (u, v) ∈ Rg\h

Rg/Rh = Rg/h since

(u, v) ∈ Rg/Rh

⇐⇒ {(u, v)} ◦Rh ⊆ Rg

⇐⇒ ∀w [(v, w) ∈ Rh =⇒ (u, w) ∈ Rg]

⇐⇒ ∀w [v ≤ h(w) =⇒ u ≤ g(w)]

⇐⇒ ∀w [h−1(v) ≤ w =⇒ g−1(u) ≤ w]

⇐⇒ g−1(u) ≤ h−1(v)for =⇒)



4

⇐⇒ u ≤ g(h−1(v)) = (g/h)(v)

⇐⇒ (u, v) ∈ Rg/h

Finally, Rid = {(u, v) : u ≤ v} = “≤” is an identity element since

Rg ◦Rid = Rg◦id = Rg = Rid ◦Rg.

Therefore {Rg : g ∈ G} is a residuated lattice of relations that is
isomorphic to G. �

Embedding BL-algebras

Theorem. Every BL-algebra is isomorphic to some algebra of relations

Proof. The MV-algebra on [0, 1] is isomorphic to {Mr : r ∈ [0, 1]}
where Mr = {(u, v) ∈ (0, 1]2 : v ≤ u− 1 + r}.
The Gödel algebra on [0, 1] is isomorphic to {Gr : r ∈ [0, 1]} where
Gr = {(u, v) ∈ (0, 1]2 : v ≤ min{u, r}}.
The product algebra on [0, 1] is isomorphic to {Pr : r ∈ [0, 1]} where
Pr = {(u, v) ∈ (0, 1]2 : v ≤ r · u}.
To complete the proof it suffices to show that RLR is closed under
ordinal sums of integral members.

Suppose A, B ∈ RLR, with A integral, A ⊆ P(U2) and B ⊆ P(V 2),
where U and V are disjoint.

Define C = A ∪ {R ∪ 1A : R ∈ B. Then it is easy to check that
C ∼= A⊕B.

Note that integrality of A is required to ensure that 1A ∪ 1B is an
identity of C. �

Finite representable generalized BL-algebras

Generalized basic logic algebras , or GBL-algebras for short, are residu-
ated lattices that satisfy

x ∧ y = ((x ∧ y)/y)y and x ∧ y = y(y\(x ∧ y)).

The variety of GBL-algebras contains LG, as well as the variety of basic
hoops (defined by adding xy = yx and x ∧ y = (x/y)y) to RL).

A residuated lattice is integral if the identity 1 is the top element.

This condition holds for basic hoops since x ∧ 1 = (x/1)1 = x.

A GBL-algebra is called a GBL-chain if it is linearly ordered.

GBL-chains generate the variety of representable GBL-algebras .
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Pseudo BL-algebras are bounded integral GBL-algebras expanded with
a constant 0 denoting the least element, and that satisfy prelinearity :
x\y ∨ y\x = 1 = x/y ∨ y/x.

BL-algebras are commutative pseudo BL-algebras (in which case pre-
linearity can be derived from the basic hoop axioms).

Hajek [1998] proved that all subdirectly irreducible BL-algebras are
BL-chains.

Also, by definition, BL-algebras are commutative and integral.

The lattice-reduct of any GBL-algebra is distributive (see e.g. J. and
Tsinakis [2002])

But in general, GBL-algebras are neither integral nor commutative nor
representable, (consider any nonrepresentable `-group).

Note that if a GBL-algebra has a top element >, then > = 1:

From x ∧ y = y(y\(x ∧ y)), we deduce

1 = 1 ∧ > = >(>\(1 ∧ >)) = >(>\1)

hence > = >1 = >>(>\1) = >(>\1) = 1.

(More generally this shows 1 is a maximal idempotent in any GBL-
algebra.)

Therefore any finite GBL-algebra is integral.

We now prove that all finite GBL-chains are in fact commutative and
hence basic hoops.

This result also holds for pseudo BL-chains (since any finite GBL-chain
can be expanded to a pseudo BL-chain by adding a constant 0 to denote
the least element)

Problem 3. Are all finite GBL-algebras commutative?

The GBL identities are equivalent to the following property that is also
called divisibility :

x ≤ y =⇒ (∃z(x = zy) and ∃z(x = yz)).

As usual, the symbol ≺ denotes the covering relation,
and � denotes the covering-or-equal relation.

As usual, the symbol ≺ denotes the covering relation,
and � denotes the covering-or-equal relation.
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Lemma 1. In any integral GBL-chain, if a ≺ b then for all c we have
ac � bc and ca � cb.

Proof. We show the contrapositive. Suppose a, b, c, x are elements in
an integral GBL-chain such that ac < x < bc.

By integrality x ≤ c, hence by divisibility ∃z such that x = zc.

Now zc < bc =⇒ b � z, so the linear order implies z < b.

Similarly, ac < zc implies a < z.

Hence a is not covered by b.

The argument for ca < x < cb is similar. �

Let L and M be integral residuated lattices with no elements in com-
mon.

Suppose further that the identity element of L is join-irreducible.

The ordinal sum of L and M is an integral residuated lattice defined
on the set (L \ {1}) ∪M as follows:

· restricted to L and M agrees with the original product on L and M
respectively, and for x ∈ L \ {e} and y ∈ M ,

x · y = x = y · x.

The order on the ordinal sum also agrees with the original order on L
and M , and all elements of L \ {e} are below all elements of M .

Let a be an idempotent element (aa = a) of an integral residuated
lattice L.

Then it is easy to check that ↑a = {x ∈ L : x ≤ a} is a subalgebra of
L.

Similarly, ↓a = {x ∈ L : x ≤ a} is closed under · and the lattice
operations, and

· is residuated by the operations

x\↓y = x\y ∧ a and x/↓y = x/y ∧ a.

The next result shows that for finite GBL-chains a acts as the identity
element on ↓a.

Lemma 2. If a finite GBL-chain L contains an idempotent a 6= 0, 1
then ↓a is a residuated lattice with identity 1↓ = a, and L decomposes
as the ordinal sum of ↑a and ↓a.
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Proof. To conclude that ↓a is a residuated lattice, it suffices to show
that ax = x = xa for all x ≤ a.

This follows from the preceding lemma since L is a finite chain,

aa = a, a0 = 0, and the map x 7→ ax preserves �.

To see that L decomposes as an ordinal sum,

note that if x ≤ a and y ≥ a then yx = x,

since 1x = x, ax = x, and · is order preserving.

Similarly xy = x. �

Since ordinal sums of commutative integral GBL-algebras are commu-
tative, it now only remains to show that every finite integral GBL-
algebras without idempotents (other than 0 and 1) is commutative.

Lemma. Let A = {a0, a1, . . . , an} be the elements of a finite GBL-
algebra, with a0 = 1, an = 0 and ai � ai+1 for i < n.

Suppose that A has no idempotents other than 1, 0, and that for some
fixed m ≤ n and all i + j < m we have ai · aj = ai+j.

Then am−k · ak = am for all k ≤ m.

Lemma 3. Let A = {a0, a1, . . . , an} be the elements of a finite GBL-
algebra, with a0 = 1, an = 0 and ai � ai+1 for i < n.

Suppose that A has no idempotents other than 1, 0, and that for some
fixed m ≤ n and all i + j < m we have ai · aj = ai+j.

Then am−k · ak = am for all k ≤ m.

Proof. Assume the stated conditions hold, and let k ≤ m.

If k = 0, then the conclusion follows immediately.

For k = 1, Lemma 1 implies that am−1 · a1 is either am−1 or am,

since am−1 · a0 = am−1.

We claim that the first case is impossible since it implies that am−1 is
idempotent.

This follows from the observation that if am−1 · a1 = am−1 then am−1 ·
a1 · a1 · · · a1 = am−1, and

the product of m− 1 copies of a1 is am−1 by assumption.

Therefore am−1 · a1 = am. (End of basis step)

Now suppose that am−(k−1) · ak−1 = am.
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Then am−k · ak = am−k · a1 · ak−1 = am−k+1 · ak−1 = am.

So the desired result follows by induction on k. �

The n-element Wajsberg chain is a basic hoop with elements a0 � a1 �
· · · � an−1 such that ai · aj = amin(i+j,n−1), hence commutative.

Theorem. Every finite GBL-chain is commutative (hence a basic hoop).

Proof. Suppose A is a GBL-chain that has elements a0 � a1 � · · · �
an = 0.

Any finite GBL-algebra is integral, hence a0 = 1.

If n = 1, then A is the 2-element Wajsberg chain (= BA).

Now suppose n > 1. If ai is idempotent for some 0 < i < n,

then A decomposes by Lemma 2 into the ordinal sum of two smaller
GBL-chains.

So we may assume that A has no idempotents other that 1, 0.

Therefore by Lemma 1, a1 · a1 = a2.

If n = 2, then A is the 3-element Wajsberg chain, and

if n > 2, then the assumptions of Lemma 3 are satisfied with m = 3.

Using this lemma as the inductive step we see that

A has the structure of the n + 1-element Wajsberg chain. �

So the finite GBL-chains are just ordinal sums of Wajsberg chains.

This makes it easy to count the number nonisomorphic (G)BL-chains
with n elements.

We just have to choose which of the n − 2 elements between 1 and 0
are idempotents.

For each of the 2n−2 different choices we obtain a nonisomorphic (G)BL-
chain.

Corollary. For n > 1 there are 2n−2 GBL-chains with n elements.

Since there are noncommutative representable integral GBL-algebras,
we also have the following result.

Corollary. The variety of representable GBL-algebras and the variety
of integral representable GBL-algebras are not generated by their finite
members (i.e. they do not have the finite model property).

*
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