Basic Logic algebras and lattice-ordered groups as algebras of binary relations

Peter Jipsen Chapman University, California

- Algebras of binary relations
- Embedding *l*-groups
- Embedding BL-algebras
- Finite representable generalized BL-algebras

Algebras of binary relations

Let us recall some standard results:

M. Stone: Every Boolean algebra is isomorphic to a subalgebra of all subsets of some set U, with $\cup, \cap, -, \emptyset, U$ as operations.

C. Holland: Every ℓ -group is isomorphic to a subalgebra of all orderautomorphisms of a chain, with pointwise order and \circ ,⁻¹, *id* as operations.

Let R, S be binary relations ($\subseteq U^2$)

relation composition:

$$R \circ S = \{(u, v) : \exists w \ (u, w) \in R \text{ and } (w, v) \in S\}$$

inverse: $R^{-1} = \{(v, u) : (u, v) \in R\}$ and

identity: $id_U = \{(u, u) : u \in U\}$

A representable relation algebra on U is a set A of relations that is closed under $\cup, \cap, -, \circ, -^1, id_U$.

 $\mathsf{RRA} = \mathrm{class}$ of all algebras isomorphic to representable relation algebras

Tarski: RRA is a variety.

Monk '64: RRA is not finitely axiomatizable.

 \circ is like a multiplication

 \circ, \cap distribute over \cup as in ℓ -groups

Naive question: Can we embed ℓ -groups into representable relation algebras?

Well, we don't need complementation.

If $R \circ R^{-1} = id_U = R^{-1} \circ R$ then R is a permutation.

So any ℓ -group element would have to map to a permutation.

But this is incompatible with preserving the order of the ℓ -group since distinct permutation are disjoint as relations.

Also, if $R, S \subseteq id_U$ then $R \circ S = R \cap S$.

But this is certainly no true in ℓ -groups.

So forget about $^{-1}$, id_U and instead look at the "residuated lattice reducts" of relation algebras.

residuals: $R \setminus S = \{(u, v) : R \circ \{(u, v)\} \subseteq S\}$ and $R/S = \{(u, v) : \{(u, v)\} \circ S \subseteq R\}$

Definition: A residuated lattice of (binary) relations is a set A of relations that is closed under $\cup, \cap, \circ, \setminus, /$ and contains a relation 1 such that $1 \circ R = R \circ 1 = R$ for all $R \in A$.

(Note that 1 is usually not the identity relation.)

RLR denotes the quasivariety of all residuated lattices of relations.

Problem 1. Is RLR a variety?

It is obvious that every residuated lattice of relations is a distributive residuated lattice.

Problem 2. Is the converse also true?

Andreka [1991] proved a general result that implies RLR is not finitely axiomatizable.

Since distributive residuated lattices form a finitely axiomatizable variety, the answer to Problem 2 would be no if RLR is a variety.

Embedding *l*-groups

LG denotes the variety of *lattice-ordered groups* (residuated lattices that satisfy $x(x \setminus 1) = 1$, so $x^{-1} = x \setminus 1$).

They are distributive residuated lattices.

Question: Is $LG \subseteq RLR$?

This is answered by the following result.

Theorem. Every ℓ -group is isomorphic to a residuated lattice of relations, hence $LG \subseteq RLR$.

Proof. Let $G = \langle \operatorname{Aut}(\Omega), \vee, \wedge, \circ, id_{\Omega}, \backslash, / \rangle$ be the ℓ -group of orderautomorphisms of a chain Ω . Note that \lor, \land are calculated pointwise.

By Holland's embedding theorem, it suffices to embed G into a residuated lattice of relations on $\Omega.$

For
$$g \in G$$
, let $R_g = \{(u, v) : u \leq g(v)\}$.
 $R_g \cap R_h = R_{g \wedge h}$ since
 $(u, v) \in R_g \cap R_h$
 $\iff u \leq g(v)$ and $u \leq h(v)$
 $\iff u \leq \min\{g(v), h(v)\} = (g \wedge h)(v)$
 $\iff (u, v) \in R_{g \wedge h}$
 $R_g \cup R_h = R_{g \vee h}$ is similar, using max.
 $R_g \circ R_h = R_{g \circ h}$ since
 $(u, v) \in R_g \circ R_h$
 $\iff \exists w [(u, w) \in R_g \text{ and } (w, v) \in R_h]$
 $\iff \exists w [u \leq g(w) \text{ and } w \leq h(v)]$
 $\iff u \leq g(h(v))$ $(w = h(v) \text{ for } \Leftarrow)$
 $\iff (u, v) \in R_{g \wedge h}$
 $R_g \setminus R_h = R_{g \wedge h}$ since
 $(u, v) \in R_g \wedge R_h$
 $\iff R_g \circ \{(u, v)\} \subseteq R_h$
 $\iff R_g \circ \{(u, v)\} \subseteq R_h$
 $\iff \forall w [(w, u) \in R_g \implies (w, v) \in R_h]$
 $\iff \forall w [w \leq g(u) \implies w \leq h(v)]$
 $\iff u \leq g^{-1}(h(v)) = (g \setminus h)(v)$
 $\iff (u, v) \in R_g \wedge h$
 $R_g/R_h = R_{g/h}$ since
 $(u, v) \in R_g/h$
 $R_g/R_h = R_{g/h}$ since
 $(u, v) \in R_g/h$
 $R_g/R_h = R_{g/h}$ since
 $(u, v) \in R_g/h$
 $(u, v) \in R_g/h$
 $\iff \{(u, v)\} \circ R_h \subseteq R_g$
 $\iff \forall w [(v, w) \in R_h \implies (u, w) \in R_g]$
 $\iff \forall w [v \leq h(w) \implies u \leq g(w)]$
 $\iff \forall w [v \leq h(w) \implies u \leq g(w)]$
 $\iff \forall w [h^{-1}(v) \leq w \implies g^{-1}(u) \leq w]$
 $\iff g^{-1}(u) \leq h^{-1}(v)$ for $\Longrightarrow)$

Finally, $R_{id} = \{(u, v) : u \leq v\} = "\leq"$ is an identity element since $R_g \circ R_{id} = R_{g \circ id} = R_g = R_{id} \circ R_g.$

Therefore $\{R_g : g \in G\}$ is a residuated lattice of relations that is isomorphic to G.

Embedding BL-algebras

Theorem. Every BL-algebra is isomorphic to some algebra of relations

Proof. The MV-algebra on [0, 1] is isomorphic to $\{M_r : r \in [0, 1]\}$ where $M_r = \{(u, v) \in (0, 1]^2 : v \le u - 1 + r\}.$

The Gödel algebra on [0, 1] is isomorphic to $\{G_r : r \in [0, 1]\}$ where $G_r = \{(u, v) \in (0, 1]^2 : v \le \min\{u, r\}\}.$

The product algebra on [0, 1] is isomorphic to $\{P_r : r \in [0, 1]\}$ where $P_r = \{(u, v) \in (0, 1]^2 : v \leq r \cdot u\}.$

To complete the proof it suffices to show that RLR is closed under ordinal sums of integral members.

Suppose $A, B \in \mathsf{RLR}$, with A integral, $A \subseteq \mathcal{P}(U^2)$ and $B \subseteq \mathcal{P}(V^2)$, where U and V are disjoint.

Define $C = A \cup \{R \cup 1^A : R \in B$. Then it is easy to check that $C \cong A \oplus B$.

Note that integrality of A is required to ensure that $1^A \cup 1^B$ is an identity of C.

Finite representable generalized BL-algebras

Generalized basic logic algebras, or *GBL-algebras* for short, are residuated lattices that satisfy

 $x \wedge y = ((x \wedge y)/y)y$ and $x \wedge y = y(y \setminus (x \wedge y)).$

The variety of GBL-algebras contains LG, as well as the variety of *basic* hoops (defined by adding xy = yx and $x \wedge y = (x/y)y$) to RL).

A residuated lattice is *integral* if the identity 1 is the top element.

This condition holds for basic hoops since $x \wedge 1 = (x/1)1 = x$.

A GBL-algebra is called a *GBL-chain* if it is linearly ordered.

GBL-chains generate the variety of *representable GBL-algebras*.

4

Pseudo BL-algebras are bounded integral GBL-algebras expanded with a constant 0 denoting the least element, and that satisfy prelinearity: $x \setminus y \vee y \setminus x = 1 = x/y \vee y/x$.

BL-algebras are commutative pseudo BL-algebras (in which case prelinearity can be derived from the basic hoop axioms).

Hajek [1998] proved that all subdirectly irreducible BL-algebras are BL-chains.

Also, by definition, BL-algebras are commutative and integral.

The lattice-reduct of any GBL-algebra is distributive (see e.g. J. and Tsinakis [2002])

But in general, GBL-algebras are neither integral nor commutative nor representable, (consider any nonrepresentable ℓ -group).

Note that if a GBL-algebra has a top element \top , then $\top = 1$:

From $x \wedge y = y(y \setminus (x \wedge y))$, we deduce

$$1 = 1 \land \top = \top (\top \backslash (1 \land \top)) = \top (\top \backslash 1)$$

hence $\top = \top 1 = \top \top (\top \setminus 1) = \top (\top \setminus 1) = 1.$

(More generally this shows 1 is a maximal idempotent in any GBL-algebra.)

Therefore any finite GBL-algebra is integral.

We now prove that all finite GBL-chains are in fact commutative and hence basic hoops.

This result also holds for pseudo BL-chains (since any finite GBL-chain can be expanded to a pseudo BL-chain by adding a constant 0 to denote the least element)

Problem 3. Are all finite GBL-algebras commutative?

The GBL identities are equivalent to the following property that is also called *divisibility*:

 $x \leq y \implies (\exists z(x = zy) \text{ and } \exists z(x = yz)).$

As usual, the symbol \prec denotes the covering relation, and \preceq denotes the covering-or-equal relation.

As usual, the symbol \prec denotes the covering relation, and \preceq denotes the covering-or-equal relation.

Lemma 1. In any integral GBL-chain, if $a \prec b$ then for all c we have $ac \preceq bc$ and $ca \preceq cb$.

Proof. We show the contrapositive. Suppose a, b, c, x are elements in an integral GBL-chain such that ac < x < bc.

By integrality $x \leq c$, hence by divisibility $\exists z$ such that x = zc.

Now $zc < bc \implies b \nleq z$, so the linear order implies z < b.

Similarly, ac < zc implies a < z.

Hence a is not covered by b.

The argument for ca < x < cb is similar.

Let L and M be integral residuated lattices with no elements in common.

Suppose further that the identity element of L is join-irreducible.

The ordinal sum of L and M is an integral residuated lattice defined on the set $(L \setminus \{1\}) \cup M$ as follows:

· restricted to L and M agrees with the original product on L and M respectively, and for $x \in L \setminus \{e\}$ and $y \in M$,

 $x \cdot y = x = y \cdot x.$

The order on the ordinal sum also agrees with the original order on L and M, and all elements of $L \setminus \{e\}$ are below all elements of M.

Let a be an idempotent element (aa = a) of an integral residuated lattice L.

Then it is easy to check that $\uparrow a = \{x \in L : x \leq a\}$ is a subalgebra of L.

Similarly, $\downarrow a = \{x \in L : x \leq a\}$ is closed under \cdot and the lattice operations, and

 \cdot is residuated by the operations

 $x \downarrow y = x \backslash y \land a$ and $x/\downarrow y = x/y \land a$.

The next result shows that for finite GBL-chains a acts as the identity element on $\downarrow a$.

Lemma 2. If a finite GBL-chain L contains an idempotent $a \neq 0, 1$ then $\downarrow a$ is a residuated lattice with identity $1^{\downarrow} = a$, and L decomposes as the ordinal sum of $\uparrow a$ and $\downarrow a$.

Proof. To conclude that $\downarrow a$ is a residuated lattice, it suffices to show that ax = x = xa for all $x \leq a$.

This follows from the preceding lemma since L is a finite chain,

aa = a, a0 = 0, and the map $x \mapsto ax$ preserves \preceq .

To see that L decomposes as an ordinal sum,

note that if $x \le a$ and $y \ge a$ then yx = x,

since 1x = x, ax = x, and \cdot is order preserving.

Similarly xy = x.

Since ordinal sums of commutative integral GBL-algebras are commutative, it now only remains to show that every finite integral GBLalgebras without idempotents (other than 0 and 1) is commutative.

Lemma. Let $A = \{a_0, a_1, \ldots, a_n\}$ be the elements of a finite GBLalgebra, with $a_0 = 1$, $a_n = 0$ and $a_i \succ a_{i+1}$ for i < n.

Suppose that A has no idempotents other than 1,0, and that for some fixed $m \leq n$ and all i + j < m we have $a_i \cdot a_j = a_{i+j}$.

Then $a_{m-k} \cdot a_k = a_m$ for all $k \leq m$.

Lemma 3. Let $A = \{a_0, a_1, \ldots, a_n\}$ be the elements of a finite GBLalgebra, with $a_0 = 1$, $a_n = 0$ and $a_i \succ a_{i+1}$ for i < n.

Suppose that A has no idempotents other than 1,0, and that for some fixed $m \leq n$ and all i + j < m we have $a_i \cdot a_j = a_{i+j}$.

Then $a_{m-k} \cdot a_k = a_m$ for all $k \leq m$.

Proof. Assume the stated conditions hold, and let $k \leq m$.

If k = 0, then the conclusion follows immediately.

For k = 1, Lemma 1 implies that $a_{m-1} \cdot a_1$ is either a_{m-1} or a_m ,

since $a_{m-1} \cdot a_0 = a_{m-1}$.

We claim that the first case is impossible since it implies that a_{m-1} is idempotent.

This follows from the observation that if $a_{m-1} \cdot a_1 = a_{m-1}$ then $a_{m-1} \cdot a_1 \cdot a_1 \cdots a_1 = a_{m-1}$, and

the product of m-1 copies of a_1 is a_{m-1} by assumption.

Therefore $a_{m-1} \cdot a_1 = a_m$. (End of basis step)

Now suppose that $a_{m-(k-1)} \cdot a_{k-1} = a_m$.

Then $a_{m-k} \cdot a_k = a_{m-k} \cdot a_1 \cdot a_{k-1} = a_{m-k+1} \cdot a_{k-1} = a_m$. So the desired result follows by induction on k.

The *n*-element Wajsberg chain is a basic hoop with elements $a_0 \succ a_1 \succ$ $\cdots \succ a_{n-1}$ such that $a_i \cdot a_j = a_{\min(i+j,n-1)}$, hence commutative.

Theorem. Every finite GBL-chain is commutative (hence a basic hoop).

Proof. Suppose A is a GBL-chain that has elements $a_0 \succ a_1 \succ \cdots \succ$ $a_n = 0.$

Any finite GBL-algebra is integral, hence $a_0 = 1$.

If n = 1, then A is the 2-element Wajsberg chain (= BA).

Now suppose n > 1. If a_i is idempotent for some 0 < i < n,

then A decomposes by Lemma 2 into the ordinal sum of two smaller GBL-chains.

So we may assume that A has no idempotents other that 1, 0.

Therefore by Lemma 1, $a_1 \cdot a_1 = a_2$.

If n = 2, then A is the 3-element Wajsberg chain, and

if n > 2, then the assumptions of Lemma 3 are satisfied with m = 3.

Using this lemma as the inductive step we see that

A has the structure of the n + 1-element Wajsberg chain.

So the finite GBL-chains are just ordinal sums of Wajsberg chains.

This makes it easy to count the number nonisomorphic (G)BL-chains with n elements.

We just have to choose which of the n-2 elements between 1 and 0 are idempotents.

For each of the 2^{n-2} different choices we obtain a nonisomorphic (G)BLchain.

Corollary. For n > 1 there are 2^{n-2} GBL-chains with n elements.

Since there are noncommutative representable integral GBL-algebras, we also have the following result.

Corollary. The variety of representable GBL-algebras and the variety of integral representable GBL-algebras are not generated by their finite members (i.e. they do not have the finite model property).

8

References

- [1] N. GALATOS and C. TSINAKIS, *Generalized MV-algebras*, to appear in Journal of Algebra.
- [2] P. HÁJEK, *Metamathematics of Fuzzy Logic*, volume 4 of *Trends in Logic*, Kluwer Academic Publishers, 1998.
- [3] P. JIPSEN and C. TSINAKIS, A Survey of Residuated Lattices, in "Ordered Algebraic Structures" (J. Martinez, editor), Kluwer Academic Publishers, Dordrecht, 2002, 19–56.